检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。不输入默认为random。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度
创建测试工程 性能测试服务为用户的测试工程提供管理能力,事务模型、测试用例、测试任务、实时报告、离线报告和智能分析的内容在同一个测试工程内共享复用,您可以为不同的测试项目创建不同的测试工程。 当前支持自定义创建测试工程和使用模板创建测试工程两种方式。PerfTest测试工程定义了以下几种模板:
dy内容做结果检验,只有条件匹配后才认为是正常响应。 测试任务模型自定义,支持复杂场景测试 通过多种用例步骤和压力模型的灵活组合,可以帮助用户测试在多操作场景并发下的应用性能表现。 测试用例可以被多个测试任务复用,针对每个测试用例可以选择不同的压力模型,并定义持续时间、并发用户数
创建私有资源组 测试工程管理 创建测试工程 创建测试任务 添加请求信息(报文) 添加请求信息(思考时间) 添加请求信息(响应提取) 添加请求信息(检查点) 测试报告管理 测试报告说明 查看实时测试报告 查看离线测试报告 变量管理 设置全局变量 JMeter测试工程 JMeter测试工程管理
选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。 父主题: 推理性能测试
选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。 父主题: 推理性能测试
选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 备注:当前版本仅支持语言+图片多模态性能测试。 脚本运行完成后,测试结果保存在benchmark_parallel.csv中。 父主题: 推理性能测试
推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动
开发环境 联邦学习模型训练运行环境信息,可通过下拉框切换当前环境。 进入代码编辑界面 创建联邦学习训练任务,详细请参考: 创建联邦学习训练任务(简易编辑器) 创建联邦学习训练任务(WebIDE) 删除联邦学习训练工程 模型训练工程描述 描述信息,支持单击图标,编辑描述信息。 对训练任务的
性能测试结果 本章介绍GeminiDB Redis性能测试结果,根据上述测试方法操作,展示在各种数据模型、测试场景、Workload模型组合下的性能指标。当前性能白皮书仅呈现中小规格并发能力下的数据库性能数据,如需更高的并发能力,可水平或垂直升级数据库规格。 总数据量小于内存场景下的测试数据请参见表1。
andom表示构造随机token的数据集进行测试;sharegpt表示使用sharegpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。
SLA配置 操作步骤 登录性能测试服务控制台,在左侧导航栏中选择“PerfTest测试工程”。 在待编辑PerfTest测试工程所在行,单击工程名称进入测试工程详情页面。 选择“测试用例”页签,在左侧“用例列表”下选择待配置的测试用例。 选择页面右侧的“SLA配置”,详细步骤可参考配置SLA规则。
压力配置 操作步骤 登录性能测试服务控制台,在左侧导航栏中选择“PerfTest测试工程”。 在待编辑PerfTest测试工程所在行,单击工程名称进入测试工程详情页面。 选择“测试用例”页签,在左侧“用例列表”下选择待配置的测试用例。 选择页面右侧的“压力配置”,参照表1设置阶段参数。一个用例最多添加1000个阶段。
全局变量概述(高性能测试工程) 全局变量用于构造数据集合,使测试数据更加丰富。 在报文事务请求信息的报文内容中引用全局变量,执行压测任务过程会将报文内容中的变量值动态替换为指定的值。 全局变量适用于很多场景,例如需要用户名密码的业务,需要使用不同的用户名以及对应密码模拟多用户场景进行压测。
图9 添加变量文件 为了测试引用变量的效果,可以在HTTP Header中引入变量。${变量名}这个格式可以告诉JMeter,变量是从外部读取的。 图10 Header引入变量 保存测试计划文件,进行脚本调试。 单击上方保存按钮,配置保存路径和文件名,保存测试任务到jmx文件,将工
超过最大递归深度导致训练作业失败 问题现象 ModelArts训练作业报错: RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。 处理方法