检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SFS Turbo性能测试 fio是一个开源的I/O压力测试工具,可以使用fio工具对SFS进行吞吐量和IOPS的性能测试。 前提条件 已在云服务器上安装fio工具。fio可从官网或GitHub下载。 注意和说明 测试性能依赖client和server之间的网络带宽及文件系统的容量大小。
支持联邦学习,模型可以采用多地数据进行联合训练,提升样本多样性,提升模型效果 支持迁移学习,只需少量数据即可完成非首站点模型训练,提升模型泛化能力 模型自动重训练,持续优化模型效果,解决老化劣化问题 预置多种高价值通信增值服务,缩短模型交付周期 无需AI技能,支持模型自动生成,业务人员快速使用
创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 图像分类项目,图片标注至少需要两个类别,且每个类别至少5张图片,才可以开始自动训练。 父主题: 模型训练
自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: 模型训练
String 训练作业的id,可通过创建训练作业生成的训练作业对象查询,如"job_instance.job_id",或从查询训练作业列表的响应中获得。 表2 返回参数说明 参数 参数类型 描述 kind String 训练作业类型。默认使用job。 枚举值: job:训练作业 hetero_job:异构作业
SFS Turbo性能测试 fio是一个开源的I/O压力测试工具,可以使用fio工具对SFS进行吞吐量和IOPS的性能测试。 前提条件 已在云服务器上安装fio工具。fio可从官网或GitHub下载。 注意和说明 测试性能依赖client和server之间的网络带宽及文件系统的容量大小。
插件管理,可以搜索需要的插件并安装,也可以对已安装的插件进行管理,比如卸载、停用等。 :训练任务列表展示,展开训练任务可查看任务下的文件、日志等。 4 代码编辑区。当前联邦学习工程的主算法文件可直接用于训练任务的训练,无需进行导入数据,及加入训练时的数据集配置操作。如果需要定制,可自行修改代码。 5 面板区
持通过“Ctrl+F”方式搜索日志。 :将当前训练工程加入训练。 :返回到当前训练工程所在的“模型训练”页面。 训练任务:查看训练任务的运行状态。可以查看训练任务的运行日志以及训练报告,删除训练任务。也可以在任务执行过程中单击暂停训练任务。 3 代码目录:包含日志文件夹、模型文件
推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目
自动学习中偏好设置的各参数训练速度大概是多少 偏好设置中: performance_first:性能优先,训练时间较短,模型较小。对于TXT、图片类训练速度为10毫秒。 balance:平衡 。对于TXT、图片类训练速度为14毫秒 。 accuracy_first:精度优先,训练时
dy内容做结果检验,只有条件匹配后才认为是正常响应。 测试任务模型自定义,支持复杂场景测试 通过多种用例步骤和压力模型的灵活组合,可以帮助用户测试在多操作场景并发下的应用性能表现。 测试用例可以被多个测试任务复用,针对每个测试用例可以选择不同的压力模型,并定义持续时间、并发用户数
创建私有资源组 测试工程管理 创建测试工程 创建测试任务 添加请求信息(报文) 添加请求信息(思考时间) 添加请求信息(响应提取) 添加请求信息(检查点) 测试报告管理 测试报告说明 查看实时测试报告 查看离线测试报告 变量管理 设置全局变量 JMeter测试工程 JMeter测试工程管理
创建测试工程 性能测试服务为用户的测试工程提供管理能力,事务模型、测试用例、测试任务、实时报告、离线报告和智能分析的内容在同一个测试工程内共享复用,您可以为不同的测试项目创建不同的测试工程。 当前支持自定义创建测试工程和使用模板创建测试工程两种方式。PerfTest测试工程定义了以下几种模板:
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。
推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
模型训练 企业A在完成特征选择后,可以单击右下角的“启动训练”按钮,配置训练的超参数并开始训练。 等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证
推理精度测试 本章节介绍如何进行推理精度测试,建议在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。若需要在生产环境中进行推理精度测试,请通过调用接口的方式进行测试。 Step1 执行精度测试 精度测试需要数据集进行测试。推荐公共数据集mmlu
创建测试用例 测试用例是基于某个性能压测场景建立的测试模型。 前提条件 已创建PerfTest测试工程。 已创建测试用例目录。 操作步骤 登录性能测试服务控制台,在左侧导航栏中选择“PerfTest测试工程”。 在待编辑PerfTest测试工程所在行,单击工程名称进入测试工程详情页面。