检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
科学计算大模型支持训练的模型类型有:中期天气要素预测模型、区域中期海洋智能预测模型。 中期天气要素预测模型选择建议: 科学计算大模型的中期天气要素预测模型,可以对未来一段时间的天气进行预测,具备以下优势: 高时间精度:中期天气要素预测模型可以预测未来1、3、6、24小时的天气情况。高时间精度对于农业、交通、能源等领域的决策和规划非常重要。
、模型数据。另一个用于存储数据集及数据集预测结果。 使用AI开发平台ModelArts,用于机器学习模型训练,预测故障分析结果。 使用函数工作流 FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务
ADMET属性预测接口 功能介绍 计算小分子的物化性质,包括吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity)。 URI POST /v1/{project_id}/admet 表1 路径参数
职务序列管理 路径:核心人事-控制台-职岗体系-职务序列 图1 职务序列 职务序列的新增 单击【新建】弹出新建弹窗,在页面输入信息后,单击【保存】,创建成功 图2 新增职务序列1 图3 新增职务序列2 职务序列的编辑 信息如有错误需要更正,单击【编辑】,针对需要修改的信息重新编辑
行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。 根据前一篇文章,企业A已经通过可信联邦学习功能训练出了一个预测客户时候是高价值用户的模型。 本文主要介绍企业A和大数据厂商B如何通过已有的模型对新的业务数据进行预测。 父主题:
作业状态。 type String 作业类型。 create_time String 作业创建时间。 finish_time String 作业结束时间。 start_time String 作业开始时间。 failed_message String 失败提示,当作业执行失败时会返回。 user_name
Apache Dubbo反序列化漏洞 2020年02月10日,华为云安全团队监测到Apache Dubbo官方发布了CVE-2019-17564漏洞通告,漏洞等级中危。当用户选择http协议进行通信时,攻击者可以通过发送POST请求的时候来执行一个反序列化的操作,由于没有任何安全
关联预测(link_prediction)(1.0.0) 表1 parameters参数说明 参数 是否必选 说明 类型 取值范围 默认值 source 是 输入起点ID。 String - - target 是 输入终点ID。 String - - 表2 response_data参数说明
”,登录目标数据库实例。 在顶部导航栏选择“库管理”。 在对象列表页签下选择“序列”。 在右侧操作栏单击“查看sequence详情”,查看创建sequence的SQL语句。 图1 序列 父主题: 序列
在线服务预测时,如何提高预测速度? 部署在线服务时,您可以选择性能更好的“计算节点规格”提高预测速度。例如使用GPU资源代替CPU资源。 部署在线服务时,您可以增加“计算节点个数”。 如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。
查询应用程序列表 功能介绍 查询应用程序列表(该功能目前仅支持华东-上海一、华北-北京四) 调用方法 请参见如何调用API。 URI GET /v2/{project_id}/fgs/applications 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是
ADMET属性预测接口(默认+自定义属性) 功能介绍 计算小分子的物化性质,包括默认的吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity),以及用户自定义的属性。 URI POST /v
序列号生成函数 generate_series()函数根据指定的开始值(start)、结束值(stop)和步长(step)返回一个基于系列的集合。 generate_series()函数的入参中,当step是正数且start大于stop,则返回零行。相反,当step是负数且sta
DRS发送Kafka消息序列化方式是什么 DRS发送到Kafka的数据,key序列化器是org.apache.kafka.common.serialization.StringSerializer,value序列化器是org.apache.kafka.common.serialization
使用TICS联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景
预测API的域名停用公告 华为云ModelArts将于2024年12月31日 00:00(北京时间)逐步停用预测API的域名huaweicloudapis.com,后续预测API切换使用新域名modelarts-infer.com。 停用范围 影响区域:华为云全部Region 停用影响
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
odelArts服务。 选择左侧导航栏“自动学习>前往新版>创建项目”,进入创建预测分析界面。 图3 预测分析 选择数据集、标签列(数据中预测结果的列,本示例中为str7),若没有数据集,可以单击“创建数据集”进行创建。 图4 创建预测分析 图5 创建数据集 当执行到服务部署时,
序列号生成函数 generate_series()函数根据指定的开始值(start)、结束值(stop)和步长(step)返回一个基于系列的集合。 generate_series()函数的入参中,当step是正数且start大于stop,则返回零行。相反,当step是负数且sta
序列号生成函数 generate_series()函数根据指定的开始值(start)、结束值(stop)和步长(step)返回一个基于系列的集合。 generate_series()函数的入参中,当step是正数且start大于stop,则返回零行。相反,当step是负数且sta