检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
需要重构,可参见下一条规则)。 正确示例: 注意该实例中提供的以Map形式缓存Table实例的方法,未必通用。这与多线程多Table实例的设计方案有关。如果确定一个Table实例仅仅可能会被用于一个线程,而且该线程也仅有一个Table实例的话,就无须使用Map。这里提供的思路仅供参考。
FS文件进行操作,使用Hive客户端对Hive表进行操作。 Oozie作业设计器使用介绍 访问Hue WebUI,请参考访问Hue WebUI界面。 在左侧导航栏单击,选择“Workflow”。 在作业设计器,支持用户创建MapReduce、Java、Streaming、Fs、Ssh、Shell和DistCp作业。
Kafka应用开发简介 Kafka简介 Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点:
实现Hive进程访问多ZooKeeper 功能简介 FusionInsight支持在同一个客户端进程内同时访问FusionInsight ZooKeeper和第三方的ZooKeeper,分别通过“testConnectHive”和“testConnectApacheZK”方法实现。
实现Hive进程访问多ZooKeeper 功能简介 FusionInsight支持在同一个客户端进程内同时访问FusionInsight ZooKeeper和第三方的ZooKeeper,分别通过“testConnectHive”和“testConnectApacheZK”方法实现。
实现Hive进程访问多ZooKeeper 功能简介 FusionInsight支持在同一个客户端进程内同时访问FusionInsight ZooKeeper和第三方的ZooKeeper,分别通过“testConnectHive”和“testConnectApacheZK”方法实现。
实现Hive进程访问多ZooKeeper 功能简介 FusionInsight支持在同一个客户端进程内同时访问FusionInsight ZooKeeper和第三方的ZooKeeper,分别通过“testConnectHive”和“testConnectApacheZK”方法实现。
当数据发生倾斜(某一部分数据量特别大),虽然没有GC(Gabage Collection,垃圾回收),但是task执行时间严重不一致。 需要重新设计key,以更小粒度的key使得task大小合理化。 修改并行度。 调用rebalance操作,使数据分区均匀。 缓冲区超时设置 由于tas
期性的在已有的代码上进行修改,可是随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有
Kafka数据消费概述 Kafka是一个分布式的、分区的、多副本的消息发布-订阅系统,它提供了类似于JMS的特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线的消息消费,如常规的消息收集、网站活性跟踪、聚合统计系统运营数据(监控
期性的在已有的代码上进行修改,可是随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有
MRS安全认证原理和认证机制 功能 开启了Kerberos认证的安全模式集群,进行应用开发时需要进行安全认证。 使用Kerberos的系统在设计上采用“客户端/服务器”结构与AES等加密技术,并且能够进行相互认证(即客户端和服务器端均可对对方进行身份认证)。可以用于防止窃听、防止r
期性的在已有的代码上进行修改,可是随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有
期性的在已有的代码上进行修改,可是随着代码的增加以及原MapReduce框架设计的不足,在原MapReduce框架上进行修改变得越来越困难,所以MapReduce的committer决定从架构上重新设计MapReduce,使下一代的MapReduce(MRv2/Yarn)框架具有
Spark SQL Adaptive Execution特性用于使Spark SQL在运行过程中,根据中间结果优化后续执行流程,提高整体执行效率。当前已实现的特性如下: 自动设置shuffle partition数 在启用Adaptive Execution特性前,Spark SQL根据spark
Spark SQL Adaptive Execution特性用于使Spark SQL在运行过程中,根据中间结果优化后续执行流程,提高整体执行效率。当前已实现的特性如下: 自动设置shuffle partition数。 在启用Adaptive Execution特性前,Spark SQL根据spark
HBase数据读写样例程序开发思路 场景说明 假定用户开发一个应用程序,用于管理企业中的使用A业务的用户信息,如表1所示,A业务操作流程如下: 创建用户信息表。 在用户信息中新增用户的学历、职称等信息。 根据用户编号查询用户姓名和地址。 根据用户姓名进行查询。 查询年龄段在[20-29]之间的用户信息。
HBase数据读写样例程序开发思路 场景说明 假定用户开发一个应用程序,用于管理企业中的使用A业务的用户信息,如表1所示,A业务操作流程如下: 创建用户信息表。 在用户信息中新增用户的学历、职称等信息。 根据用户编号查询用户姓名和地址。 根据用户姓名进行查询。 查询年龄段在[20-29]之间的用户信息。
当数据发生倾斜(某一部分数据量特别大),虽然没有GC(Gabage Collection,垃圾回收),但是task执行时间严重不一致。 需要重新设计key,以更小粒度的key使得task大小合理化。 修改并行度。 调用rebalance操作,使数据分区均匀。 缓冲区超时设置 由于tas
使用ZooKeeper客户端 ZooKeeper是一个开源的,高可靠的,分布式一致性协调服务。ZooKeeper设计目标是用来解决那些复杂,易出错的分布式系统难以保证数据一致性的。不必开发专门的协同应用,十分适合高可用服务保持数据一致性。 背景信息 在使用客户端前,除主管理节点以