检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
的多语言文本翻译工作流,并确保不同用户需求(如普通对话、文本翻译)能够被准确识别和处理。 工作流节点设计 选取工作流的几个重要节点,每个节点负责特定的任务。以下是各节点的功能和设计思路: 开始节点:作为工作流的入口,开始节点负责接收用户输入的文本。无论是普通对话文本,还是包含翻译请求的文本,都将从此节点开始。
或缺的重要步骤。 数据工程操作流程见图1、表1。 图1 数据集构建流程图 表1 数据集构建流程表 流程 子流程 说明 导入数据至盘古平台 创建导入任务 将存储在OBS服务中的数据导入至平台统一管理,用于后续加工或发布操作。 加工数据集 加工数据集 通过专用的加工算子对数据进行预处
NLP大模型开发流程 ModelArts Studio大模型开发平台提供了NLP大模型的全流程开发支持,涵盖了从数据处理到模型训练、压缩、部署、评测、调用的各个环节。 NLP大模型开发流程见图4、表4。 图4 NLP大模型开发流程图 表4 NLP大模型开发流程表 流程 子流程 说明 操作指导
型的N4系列模型。 操作流程 创建盘古多语言文本翻译工作流的流程见表1。 表1 创建盘古多语言文本翻译工作流流程 操作步骤 说明 步骤1:创建并配置多语言文本翻译工作流 本样例场景实现多语言文本翻译工作流的创建与配置。 步骤2:单节点调试 本样例场景实现工作流中的单节点调试。 步骤3:试运行多语言文本翻译工作流
等,开发者可通过拖、拉、拽可视化编排更多的节点,实现复杂业务流程的编排,从而快速构建应用。 工作流方式主要面向目标任务包含多个复杂步骤、对输出结果成功率和准确率有严格要求的复杂业务场景。 在编排工作流时,可以使用以下节点进行功能设计: 开始节点:开始节点是工作流的起始节点,用户输入的信息由开始节点传入。
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。
编排工作流 Agent平台支持对工作流编排多个节点,以实现复杂业务流程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度层、时间分辨率、水平分辨率
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着重要作用。用户可以通过提示词工程来提高大语言
作流场景的流程型Agent,如金融分析助手、网络检测助手等。 知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库等信息,实现工具自主规划与调用,优点是可零码开发,对话过程更为智能,缺点是当大模型受到输入限制,难以执行链路较长且复杂的流程。 流程型Agent
部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调用它们,从外部服务中获取结果并返回。这样的设计使得Agent能够智能处理复杂任务,甚至跨领域解决问题,实现对复杂问题的自动化处理。 Agent开发平台支持两种类型的插件: 预置插件:平台为开发者和用户提供了预置插件
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。
帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Prompt提示词
话上下文。 图4 多场景测试-复杂对话场景 优化Prompt设计:从prompt设计维度来看,可以通过以下方式进行优化: 清晰的输入指令: 在翻译场景中,明确的输入指令将提升工作流的运行效果。例如:prompt可以设计为:请将以下中文句子翻译成英文:“我喜欢吃苹果”。通过这种明确的指令,更容易生成准确的翻译结果。
通过专用的加工算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。此外,用户还可以创建自定义算子,针对特定业务场景和模型需求,灵活地进行数据加工,从而进一步优化数据处理流程,提高模型的准确性和鲁棒性。 数据合成 利用预置或自定义的数据
低代码构建多语言文本翻译工作流 方案设计 构建流程 效果评估与优化 典型问题 附录 父主题: Agent应用实践
时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 数据工程介绍 数据工程使用流程 数据集格式要求 导入数据至盘古平台 加工数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。
提示词写作常用方法论 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部