检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
计算规格说明 AI Gallery提供了多种计算规格供用户按需选用。只要用户的账号费用充足,就可以持续使用资源,详细计费说明请参见计费说明。 计费说明 AI Gallery的计费规则如表1所示。
按照计算资源费用、存储费用结算,那么运行这个训练作业的费用计算如下: 计算资源费用 = 3.40 元/小时 * 1 小时 = 3.40 元 存储费用:训练的数据通过对象存储服务(OBS)上传或导出,存储计费按照OBS的计费规则。
同理如果计算耗时占比较大,则应该重点关注计算维度的分析。
表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。
表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。 按需计费 规格单价 * 计算节点个数 * 使用时长 专属资源池 专属资源池的费用已在购买时支付,部署服务不再收费。
按照计算资源费用、存储费用结算,那么运行这个自动学习作业的费用计算过程如下: 计算资源费用 = 规格单价 * 计算节点个数 * 训练作业运行时长(数据校验)+ 规格单价 * 计算节点个数 * 训练作业运行时长(图像分类) + 规格单价 * 计算节点个数 * 服务运行时长 计算资源费用
按照计算资源费用结算,那么此专属资源池运行期间产生的费用计算如下: 计算资源费用 = 1,750.00 元 * 2 = 3,500.00 元 综上,运行专属资源池的费用 = 3,500.00 元 父主题: 计费项
如果实例数设置为1,表示后台的计算模式是单机模式;如果实例数设置大于1,表示后台的计算模式为分布式的。您可以根据实际需求进行选择。 推理速度与模型复杂度强相关,您可以尝试优化模型提高预测速度。 ModelArts中提供了模型版本管理的功能,方便溯源和模型反复调优。
默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask 只支持布尔(bool)数据类型,或者为None。
默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask 只支持布尔(bool)数据类型,或者为None。
默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask只支持布尔(bool)数据类型,或者为None。
默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask 只支持布尔(bool)数据类型,或者为None。
默认开启重计算,则前向时qkv没有梯度,如果需要关闭重计算,可以在yaml配置 `disable_gradient_checkpointing: true` 关闭,但显存占用会直线上升。 attn_mask只支持布尔(bool)数据类型,或者为None。
在Workflow中使用大数据能力(DLI/MRS) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。
msprobe精度比对 精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。
PD分离部署使用说明 什么是PD分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。
什么是分离部署 大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。