检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
计算资源支持按需计费。 表1 适用计费项 计费项 说明 计算资源 公共资源池 包括vCPU、GPU和NPU。 AI专属资源池中的Standard资源池 ModelArts支持购买两种按需计费的资源池,包括公共资源池和专属资源池。 假设您计划购买按需计费的专属资源池,可在ModelArts控制台“AI专属资源池
Name/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 物体检测数据集要求用户将标注对象和标注文件存储在同一目录,并且一一对应。例如标注对象文件名为“IMG_20180919_114745.jpg”,那么标注文件的文件名应为“IMG_20180919_114745
集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、婚姻状况、文化程度、是否有房贷和是否有个人贷款。 表1 数据源的具体字段及意义 字段名 含义 类型 描述 attr_1 年龄 Int 表示客户的年龄。 attr_2 职业 String
CommonOperations ModelArts Dependency Access 弹性集群Cluster(包含Standard资源池和Lite资源池) 云审计服务CTS CTS Administrator 云容器引擎CCE CCE Administrator 裸金属服务器BMS
在Workflow中更新已部署的服务 场景介绍 大部分场景下的工作流都是第一次运行部署新服务,后续进行模型迭代时,需要对已部署的服务进行更新。因此需要在同一条工作流中,同时支持服务的部署及更新能力。 编写工作流 基于编写工作流代码示例的场景案例进行改造,代码编写示例如下: from
编排Workflow Workflow的编排主要在于每个节点的定义,您可以参考创建Workflow节点章节,按照自己的场景需求选择相应的代码示例模板进行修改。编排过程主要分为以下几个步骤。 梳理场景,了解预置Step的功能,确定最终的DAG结构。 单节点功能,如训练、推理等在ModelArts相应服务中调试通过。
本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。 图8 示例图片 图9 预测结果展示 Step7
ignore_eos 否 False Bool ignore_eos表示是否忽略EOS并且继续生成token。 Step5 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
ignore_eos 否 False Bool ignore_eos表示是否忽略EOS并且继续生成token。 Step5 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
将在到期后自动停止使用。 如果在计费周期内不再使用包年/包月资源,您可以执行退订操作,系统将根据资源是否属于五天无理由退订、是否使用代金券和折扣券等条件返还一定金额到您的账户。详细的退订规则请参见云服务退订规则概览。 如果您已开启“自动续费”功能,为避免继续产生费用,请在自动续费
训练作业卡死检测目前仅支持资源类型为GPU的训练作业。 仅使用新版专属资源池训练时才支持设置训练作业优先级。公共资源池和旧版专属资源池均不支持设置训练作业优先级。 仅支持PyTorch和MindSpore框架的分布式训练和调测,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 使用
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
peed; sh ./scripts/obs_pipeline.sh Step2 配置数据输入和输出 单击“增加训练输入”和“增加训练输出”,用于配置训练作业开始时需要输入数据的路径和训练结束后输出数据的路径。 在“输入”的输入框内设置变量:ORIGINAL_TRAIN_DATA
的数据增强模型的能力和性能。允许模型逐步适应新的任务和数据,避免过拟合和欠拟合问题,进一步提高模型的泛化能力。 调优后模型名称 设置调优后产生的新模型的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字母、数字、下划线(_)、中划线(-)和半角句号(.)。 调优后模型权重存放路径
Gallery的订阅算法实现花卉识别 本案例以“ResNet_v1_50”算法、花卉识别数据集为例,指导如何从AI Gallery下载数据集和订阅算法,然后使用算法创建训练模型,将所得的模型部署为在线服务。其他算法操作步骤类似,可参考“ResNet_v1_50”算法操作。 步骤1:准备训练数据