检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts的Notebook中使用MoXing时,如何进行增量训练? 在使用MoXing构建模型时,如果您对前一次训练结果不满意,可以在更改部分数据和标注信息后,进行增量训练。 “mox.run”添加增量训练参数 在完成标注数据或数据集的修改后,您可以在“mox.run”中,修改“log_
保存Notebook实例 通过预置的镜像创建Notebook实例,在基础镜像上安装对应的自定义软件和依赖,在管理页面上进行操作,进而完成将运行的实例环境以容器镜像的方式保存下来。镜像保存后,默认工作目录是根目录“/”路径。 保存的镜像中,安装的依赖包不丢失,持久化存储的部分(ho
在Notebook中通过镜像保存功能制作自定义镜像 通过预置的镜像创建Notebook实例,在基础镜像上安装对应的自定义软件和依赖,在管理页面上进行操作,进而完成将运行的实例环境以容器镜像的方式保存下来。镜像保存后,默认工作目录是根目录“/”路径。 保存的镜像中,安装的依赖包不丢
911版本仅是使用run_type来指定训练的类型,只能区分预训练、全参微调和lora微调但实际上预训练和sft是训练的不同阶段,全参、lora是训练参数设置方式。为了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增STAGE,表示训练的阶段,可以选择的参数包括:
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS各类各项云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。
对用户分享的新闻链接进行智能分类,帮助用户迅速定位到感兴趣的话题。 内容推荐系统: 根据用户的阅读偏好和历史行为,智能推荐相关新闻,增强用户粘性和满意度。 新闻分析工具: 为分析师提供自动分类的新闻数据,便于进行市场趋势和热点分析。 方案流程 图1 方案实现流程 准备数据集:获取新闻数据集,并上传到OBS。 创建模型
rc3,驱动版本是23.0.6。 本案例仅支持在专属资源池上运行。 文档更新内容 6.3.908版本相对于6.3.907版本新增如下内容: 文档和代码中新增对mistral和mixtral模型的适配,并添加训练推荐配置。 文档准备镜像步骤中,仅提供:直接使用基础镜像方案、ECS中构建新镜像方案,删除使用Notebook创建镜像方案。
1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展Flux模型的FLUX.1-dev版本分别使用ComfyUI 0.2.2和Diffusers 0.30
Snt9B开展Flux模型的训练过程,包括基于kohya的Fintune训练和基于ai-toolkit的Lora训练。 约束限制 本方案目前仅适用于企业客户。 本文档适配昇腾云ModelArts 6.3.911版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。
perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见支持的模型列表和权重文件。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。
图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。 ModelArts的AI Gallery中提供了常见的精度较高的算法和相应的训练数据集,用户可以在AI
区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0
Standard数据管理相关计费FAQ ModelArts Standard自动学习所创建项目一直在扣费,如何停止计费? ModelArts Standard训练作业和模型部署如何收费?
etName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标注对象和标注文件存储在同一目录,并且一一对应,例如标注对象文件名为“10.jpg”,那么标注文件的文件名应为“10.txt”。 数据文件存储示例:
标签名是由中文、大小写字母、数字、中划线或下划线组成,且不超过32位的字符串。 如您将已标注好的文本文件上传至OBS桶,请按照如下规范上传。 要求将标注对象和标注文件存储在同一目录,并且一一对应,如标注对象文件名为“COMMENTS_114745.txt”,那么标注文件名为“COMMENTS_114745_result
下载文件至本地”时,只能使用JupyterLab页面提供的功能。 如需使用大文件上传和下载的功能,建议您前往Notebook,创建一个收费的实例进行使用。 切换规格。 CodeLab支持CPU和GPU两种规格,在右侧区域,单击切换规格,修改规格类型。 图3 切换规格 资源监控。
作。 当目录中所有音频都完成标注后,您可以在“已标注”页签下查看已完成标注的音频,或者通过右侧的“全部标签”列表,了解当前已完成的标签名称和标签数量。 同步或添加音频 在“数据标注”节点单击“实例详情”进入“音频标注”页面。声音分类项目创建时,音频来源有两种,通过本地添加或同步OBS中的数据。