检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人
请求URI 服务的请求URI即API服务的终端地址,通过该地址与API进行通信和交互。 URI获取步骤如下: 登录ModelArts Studio大模型开发平台。 进入所需工作空间。 获取请求URI。 获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 >
CV大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类
知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可能会受到输入长度限制,难以有效处理较为复杂的工作流。
训练指标介绍请参见表2。 图1 查看训练指标 表2 训练指标说明 模型 训练指标 指标说明 NLP大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。
每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出多个工作空间,实现资产的精细化管理与有序调配,帮助用户高效地规划和分配任务,使团队协作更加高效。 此外,平台
"请问科技行业的公司,他们的平均利润和市值是多少?" …… 微调数据要求: 数据格式样例:JSONL格式,每行是一条JSON,包含“context”和“target”两个字段。示例如下: {"context": "今天是2023-11-20,你是一个银行智能助理,现在需要根据用户问
率,降低能耗。 油气行业:进行地质分层,例如基于地质数据,对不同地层进行分类,识别储层和非储层,提高勘探和开发效率。进行岩性识别,例如对不同岩石类型进行分类,帮助识别岩石的性质和特征,指导钻井和开采。进行流体识别,例如根据测井数据,识别储层中的油、气、水等流体类型。 2024年1
通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。
繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。 温度 调高温度会使得模型的输出更多样性和创新性,反之,降低温度会使输出内容更加遵循指令要求但减少多样性,取值范围为0到1之间。
使用规则构建的优点是快速且成本低,缺点是数据多样性较低。 基于大模型的数据泛化:您可以通过调用大模型(比如盘古提供的任意一个规格的基础功能模型)来获取有监督场景。一个比较常见的方法是,将无监督的文本按照章节、段落、字符数进行切片,让模型基于这个片段生成问答对,再将段落、问题和答案三者组装
常能够实现最佳的模型性能,但需要消耗大量计算资源和时间,计算开销较大。 基础模型 选择全量微调所用的基础模型, 可从“已发布模型”或“未发布模型”中进行选择。 高级设置 checkpoints:在模型训练过程中,用于保存模型权重和状态的机制。 关闭:关闭后不保存checkpoin
的搜索体验。 温度 用于控制生成文本的多样性和创造力。调高温度会使得模型的输出更多样性和创新性。 默认值:0 核采样 控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。 默认值:1.0 最大口令限制 用于控制聊天回复的长度和质量。 默认值:2048 话题重复度控制 用
生成准确回答。在这种情况下,通过调整提示词来引导模型的生成风格和细节,通常可以达到较好的效果。 业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在
练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通过合理设置,可以帮助模型检测出多种尺寸的目标。
这意味着系统将在基模型池中的5个LightGBM模型之外,推荐5个不同的模型。最终,系统将使用10个模型进行训练,其中5个是LightGBM模型,另外5个是推荐的不同模型。 日期列名 日期列的列名。例如,["date"]表示csv数据中date列为日期列,默认设置为[],表示没有日期列,选择全部数据做训练。
类型、值:支持“引用”和“输入”两种类型。 引用:支持用户选择工作流中已包含的前置节点的输出变量值。 输入:支持用户自定义取值。 输出参数 输出参数所有信息从插件元信息中导入,用户无需手动添加。 节点配置完成后,单击“确定”。 连接插件节点和其他节点。 步骤7:配置判断节点 判断节点是一个IF
F1_SCORE 精准率和召回率的调和平均数,数值越高,表明模型性能越好。 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权
'mp4',//视频文件扩展名。 // 标注 34.5, 42.4 分别表示起始时间和结束时间,单位为s。 // label 表示分类,必须是classes列表中的一个元素,表示该视频片段对应的事件或动作类型。 'annotations':