检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
展数据集,增强训练模型的多样性和泛化能力。 合成文本类数据集 标注文本类数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 标注文本类数据集 发布文本类数据集
在“从资产选模型”选择所需模型。 部署方式 选择“云上部署”。 作业输入方式 选择 “OBS”表示从OBS中读取数据。 作业输出方式 选择 “OBS”表示将输出结果存储在OBS中。 作业配置参数 设置模型部署参数信息,平台已给出默认值。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安
融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平台为用户提供了多种规格的科学计算大模型,以满足不同场景和需求。以下是当前支持的模型清单,您
与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的专业大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 模型支持区域 模型名称 说明 西南-贵阳一
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
参数 是否必选 参数类型 描述 name 是 String 推理作业的名称。 input 是 TaskInputDto object 输入数据的信息。 output 是 TaskOutputDto object 输出数据的信息。 config 是 TaskConfigDto object
当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提
NLP大模型训练流程介绍 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模型提供了处理各种语言任务的基础,如阅读理解、文本生成和情感分析,但它还未能针对特定任务进行优化。 针对预训练阶段,还
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
{"system":"你是一个机智幽默问答助手","context":"你好,请介绍自己","target":"哈哈,你好呀,我是你的聪明助手。"} csv格式:csv文件的第一列对应system,第二三列分别对应context、target。 "你是一个机智幽默问答助手","你好,请介绍自己"
资源、训练资源、推理资源,支持模型资产的包年/包月订购、资源的包年/包月和按需计费订购。 模型资产:模型资产可用于模型开发、应用开发等模块。当前支持订购NLP大模型、CV大模型、预测大模型、科学计算大模型和专业大模型的模型资产。 数据资源:数据通算单元适用于数据加工,用于正则类算
工作流介绍 Agent开发平台的工作流由多个节点构成,节点是组成工作流的基本单元。平台支持多种节点,包括开始、结束、大模型、意图识别、提问器、插件、判断、代码和消息节点。 创建工作流时,每个节点需要配置不同的参数,如输入和输出参数等,开发者可通过拖、拉、拽可视化编排更多的节点,实
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例
管理盘古工作空间成员 如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。
创建推理作业API后,在这个API基础上去除末尾的/tasks即是域名。 表1 路径参数 参数 是否必选 参数类型 描述 task_id 是 String 推理作业的ID。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 id String
同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景是否一致,质量较差的测试集无法反映模型的真实结果。 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象
参数 是否必选 参数类型 描述 name 是 String 推理作业的名称。 input 是 TaskInputDto object 输入数据的信息。 output 是 TaskOutputDto object 输出数据的信息。 config 是 TaskConfigDto object
全球范围,纬度90N~-90S,经度0W~360E。 训练集和验证集均推荐使用>1个月的历史数据。 训练数据一般可通过公开数据集获取,例如ERA5。ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940年1月至今的时间段,提供每小时的大气、陆地和海洋气候变量的估计值。