检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型已经训练完成并进行发布,用户可以使用模型进行部署、推理操作。 训练完成 模型训练已经成功完成。 训练中 模型正在训练中,训练过程尚未结束。 训练失败 模型训练过程中出现错误,需查看日志定位训练失败原因。 已停止 模型训练已被用户手动停止。 停止中 模型训练正在停止中。 训练异常
断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生
在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改动
在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改动
断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生
输入租户名和密码,单击“登录”,进入NAIE服务官网。 首次登录后请及时修改密码,并定期修改密码。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“我要购买”,进入服务订购界面。 区域:为用户提供服务的华为云Region。请选择“华北-北京四”。
训练作业重调度 当训练作业发生故障恢复时(例如进程级恢复、POD级重调度、JOB级重调度等),作业详情页面中会出现“故障恢复详情”页签,里面记录了训练作业的启停情况。 在ModelArts管理控制台的左侧导航栏中选择“模型训练 > 训练作业”。 在训练作业列表中,单击作业名称进入训练作业详情页面。
是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint继续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置继续训练,加载中断生成的checkpoint,中间不需要改
模型训练服务首页 如何回到模型训练服务首页? 创建项目公开至组的参数是什么含义? 父主题: 常见问题
同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 评估结果说明 根据训练数据类的不同评估结果会包含不同的指标。 离散值评估结果 包含
使用reload ckpt恢复中断的训练 在容错机制下,如果因为硬件问题导致训练作业重启,用户可以在代码中读取预训练模型,恢复至重启前的训练状态。用户需要在代码里加上reload ckpt的代码,使能读取训练中断前保存的预训练模型。具体请参见断点续训练。 父主题: 模型训练高可靠性
训练轮数是指需要完成全量训练数据集训练的次数。训练轮数越大,模型学习数据的迭代步数就越多,可以学得更深入,但过高会导致过拟合;训练轮数越小,模型学习数据的迭代步数就越少,过低则会导致欠拟合。 您可根据任务难度和数据规模进行调整。一般来说,如果目标任务的难度较大或数据量级很小,可以使用较大的训练轮数,反之可以使用较小的训练轮数。
是否生成本地模型包:请保持默认值关闭。即默认不在当前JupyterLab特征工程项目中生成本地模型包。仅归档模型包,供模型管理页面新建模型包使用。 是否生成本地metadata.json:请保持默认值关闭。 单击归档cell代码框左侧的图标,完成模型归档。 父主题: 模型训练
far10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。 基于开发环境使用SDK调测训练作业:介绍如何在ModelArts的开发环境中,使用SDK调测单机和多机分布式训练作业。 父主题: 分布式模型训练
自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明
示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明
创建Tensorboard方式: 创建训练任务的时候同步创建Tensorboard 在模型训练工程代码编辑界面控制台的Tensorboard页签中创建Tensorboard 新建模型训练工程,创建训练任务后,在任务详情的Tensorboard页签中创建Tensorboard 配置训练任务时,AI引擎选择Py
输入租户名和密码,单击“登录”,进入NAIE服务官网。 首次登录后请及时修改密码,并定期修改密码。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“我要购买”,进入服务订购界面。 区域:为用户提供服务的华为云Region。请选择“华北-北京四”。
eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的
科学计算大模型训练流程与选择建议 科学计算大模型训练流程介绍 科学计算大模型主要用于。 科学计算大模型的训练主要分为两个阶段:预训练与微调。 预训练阶段:预训练是模型学习基础知识的过程,基于大规模通用数据集进行。例如,在区域海洋要素预测中,可以重新定义深海变量、海表变量,调整深度