检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
相应的标签。在深度学习领域,增强有重要的意义,能提升模型的泛化能力,增加抗扰动的能力。数据扩增过程不会改动原始数据,扩增后的图片或xml文件保存在指定的输出路径下。 ModelArts提供以下数据扩增算子: 表1 数据扩增算子介绍 算子 算子说明 高级 AddNoise 添加噪声
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现图像分类 准备图像分类数据 创建图像分类项目 标注图像分类数据 训练图像分类模型 部署图像分类服务 父主题: 使用自动学习实现零代码AI开发
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 常见问题 使用从OBS选择的数据创建表格数据集如何处理Schema信息?
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
在数据标注页面,单击右侧的“标签管理”,在标签管理页,显示全部标签的信息。 修改标签:单击操作列的“修改”按钮,在弹出的对话框中输入修改后的标签名、选择修改后的快捷键,然后单击“确定”完成修改。修改后,之前添加了此标签的音频,都将被标注为新的标签名称。 删除标签:单击操作列的“删除”按钮,
完成音频标注后,可以进行模型的训练。模型训练的目的是得到满足需求的声音分类模型。由于用于训练的音频,至少有2种以上的分类,每种分类的音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运行总览页面,单击数据标注节点的“实例详情”进入数据标注页面,完成数据标注。
模型训练 自动学习训练作业失败 父主题: 自动学习
自动学习”,进入自动学习总览页面。 在自动学习列表上方的搜索框中,根据您需要的属性类型,例如,名称、状态、项目类型、当前节点、标签等,过滤出相应的工作流。 单击搜索框右侧的按钮,可选择自动学习的基础设置,需要的显示列。 表格内容折行:默认为关闭状态,启用此能力可让表格内容自动折行,禁用此功能可截断文本。
准备数据 数据集版本发布失败 数据集版本不合格 父主题: 自动学习
模型发布 模型发布失败 父主题: 自动学习
建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。 标注质量对于最终的模型精度有极大的影响,标注过程中尽量不要出现误标情况。 音频标注涉及到的标注标签和声音内容只支持中文和英文,不支持小语种。
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。
完成数据标注后,可进行模型的训练。模型训练的目的是得到满足需求的文本分类模型。由于用于训练的文本,至少有2种以上的分类(即2种以上的标签),每种分类的文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,单击项目名称进入运行