检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
一,数据增强概述 数据增强(也叫数据扩增)的目的是为了扩充数据和提升模型的泛化能力。有效的数据扩充不仅能扩充训练样本数量,还能增加训练样本的多样性,一方面可避免过拟合,另一方面又会带来模型性能的提升。 数据增强几种常用方法有: 图像水平/竖直翻转、随机抠取、尺度变换和旋转。其中
让机器学习模型泛化得更好的最好办法是使用更多的数据进行训练。当然,在实践中,我们拥有的数据量是很有限的。解决这个问题的一种方法是创建假数据并添加到训练集中。对于一些机器学习任务,创建新的假数据相当简单。对分类来说这种方法是最简单的。分类器需要一个复杂的高维输入 x,并用单个类别标识
在比较机器学习基准测试的结果时,考虑其采取的数据集增强是很重要的。通常情况下,人工设计的数据集增强方案可以大大减少机器学习技术的泛化误差。将一个机器学习算法的性能与另一个进行对比时,对照实验是必要的。在比较机器学习算法 A 和机器学习算法 B 时,应该确保这两个算法使用同一人工设计的数据集增强方案进行评估。假设算法
本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍增强式学习跟机器学习一样都是三个步骤、Policy Gradient与修课心情、Actor Critic、机器的望梅止渴、逆向增强式学习。
移动增强现实(AR)借助智能移动终端将虚拟信息和真实世界进行实时融合,能否实时准确地对 环境中需要增强的物体进行目标检测直接决定了系统的性能。随着深度学习的快速发展,近年来出现了大量的 基于深度学习的目标检测方法。由于存在移动增强设备计算能力有限、能耗大、模型尺寸大以及卸载任务到边
弹出故事或概念的数字和3D体验,让学生们感到很有趣。4、增强现实游戏学习的游戏化,以及与现实世界高度互动的测验和寻宝等机制,使学习变得有趣,并使学习与学习者更加相关。增强现实的未来角色如今,随着父母努力在家里教育孩子,以及教师寻求其他在线资源来帮助远程学习,像这样的辅助教学工具将
弹出故事或概念的数字和3D体验,让学生们感到很有趣。4、增强现实游戏学习的游戏化,以及与现实世界高度互动的测验和寻宝等机制,使学习变得有趣,并使学习与学习者更加相关。增强现实的未来角色如今,随着父母努力在家里教育孩子,以及教师寻求其他在线资源来帮助远程学习,像这样的辅助教学工具将
习。在全球疫情大流行期间,这与坐在努力教书的家长面前想比,更具吸引力。增强现实(AR)学习的主要好处…AR使各种知识和信息能够以创造性和集成的方式共享,例如有趣的动画和引人入胜的视频。通过更大的参与度和互动性,学习成绩得到了提升。它在学生和他们所处环境之间创造了一种身体接触,在社
习。在全球疫情大流行期间,这与坐在努力教书的家长面前想比,更具吸引力。增强现实(AR)学习的主要好处…AR使各种知识和信息能够以创造性和集成的方式共享,例如有趣的动画和引人入胜的视频。通过更大的参与度和互动性,学习成绩得到了提升。它在学生和他们所处环境之间创造了一种身体接触,在社
编程的本质来源于算法,而算法的本质来源于数学,编程只不过将数学题进行代码化。 ---- Runsen 深度优先搜索和广度优先搜索作为应用广泛的搜索算法,一般是必考算法。 深度优先算法(DFS) 深度优先算法的本质是回溯算法,多数是应用在树上,一个比较典型的应用就是二叉树的中序遍历。
[1] 也就是说增强学习关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。 通过增强学习,一个智能体应该知道在什么状态下应该采取什么行为。RL是从环境状态到动作的映射的学习,我们把这个映射称为策略。 那么增强学习具体解决哪些问题呢,我们来举一些例子:
数据的一种机器学习技术。它的基本特点,是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网
Portraits》提出了相关动态人像照明学习的技术方案,阐述如下:这是一种基于学习的技术,用于估计从任意室内或室外照明条件下捕获的单一低动态范围(LDR)下人像图像中的高动态范围(HDR)和全向照明。模型训练使用了肖像照片并搭配地面真实环境照明。利用灯光舞台记录了70个不同对象不同表情的反射率和蒙版,生成了
器人自动找到合适的前进方向。 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式方法,但在局势复杂时,仍然要让机器向后面多考虑几步后才能决定走哪一步比较好,因此需要更好的决策方法。 &
texNum]; //邻接矩阵,可看作边表 int n, e; //图中的顶点数n和边数e }MGraph; //用邻接矩阵表示的图的类型 //建立邻接矩阵 void CreatMGraph(MGraph *G) { int i
述如下:强化学习(RL)代理在有限的反馈中解决具有大观察和行动空间的任务方面取得了很大的成功。然而,训练代理是数据密集型的,并不能保证学习到的行为是安全的,不会违反环境的规则,这对现实场景中的实际部署有限制。本文通过将深度RL与基于约束的增强模型相结合,探讨可靠代理的工程问题,从
本文介绍了机器学习的五种类型:监督学习、无监督学习、半监督学习、增强学习和深度学习。不同类型的机器学习适用于不同的应用场景,选择合适的机器学习类型可以提高学习效率和准确率。随着机器学习技术的不断发展,相信未来会有更多的机器学习类型出现,为我们的生活带来更多的便利和创新。
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值。(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的增强学习)。 那么如何求解最优策略呢?基本的解法有三种: 动态规划法(dynamic
深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到
引言 随着深度学习和计算机视觉技术的不断发展,深度感知技术在增强现实(AR)中的应用日益广泛。深度感知技术可以帮助AR系统更准确地理解和感知环境中的三维结构,为用户提供更加逼真、沉浸的增强现实体验。本文将探讨深度感知技术在增强现实中的应用,包括项目的介绍、部署过程以及未来的发展方向。