内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 浅谈深度学习

    动从数据中学习模式,并根据这些模式进行预测分类。由于其高效性准确性,深度学习技术正在成为越来越多领域主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型训练需要大量数据计算资源,而且通常需要大量时间人力来完成。此外,深度学习模型精度稳定性也需要

    作者: 运气男孩
    24
    3
  • 深度学习概念

    Intelligence)。深度学习学习样本数据内在规律表示层次,这些学习过程中获得信息对诸如文字、图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语言和图像识别方面取得效果,远远超过先前

    作者: QGS
    973
    3
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同模型,从训练集有替换采样构造k 个不同数据集,然后在训练集 i 上训练模型 i。Dropout目标是在指数级数量神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量学习算法较小步长,如梯度下降

    作者: 小强鼓掌
    1254
    2
  • 浅谈深度学习

    首先要明白什么是深度学习深度学习是用于建立、模拟人脑进行分析学习神经网络,并模仿人脑机制来解释数据一种机器学习技术。它基本特点是试图模仿大脑神经元之间传递,处理信息模式。最显著应用是计算机视觉自然语言处理(NLP)领域。显然,“深度学习”是与机器学习“神经网络”

    作者: 运气男孩
    1268
    3
  • 【AIGC】深入浅出学习RAG(检索增强)技术

    用于查询机器学习模型基本提示架构如下所示: 在这种情况下,我们向机器学习模型询问波兰首都情况。这是常识,我们模型对答案没有问题。 二、深度使用检索增强 想更深入地了解这个简单例子吗?比方说,我们想要一个机器学习模型,可以回答有关我们从未出版过 300 页原始书《我故事》

    作者: Freedom123
    发表时间: 2024-05-11 10:14:52
    32
    0
  • 什么是深度学习

    深度学习是使用多层结构从原始数据中自动学习并提取高层次特征一类机器学习算法。通常,从原始数据中提取高层次、抽象特征是非常困难深度学习将原始数据表示成一个嵌套特征层级,这样一来,每层特征均可以由更简单特征来定义计算。尤为重要是,深度学习可以自动地学习如何最优地将不

    作者: 角动量
    1546
    5
  • 深度学习前景

    为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员不同观点影响。全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控

    作者: G-washington
    1665
    1
  • 浅谈深度学习

    学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习思想:深度神经网络基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层高层次特征来表示数据抽象语义信息,获得更好特征鲁棒性。深度学习应用

    作者: QGS
    39
    2
  • 深度学习学习 XOR

    W , c) 计算得到隐藏单元向量 h。这些隐藏单元值随后被用作第二层输入。第二层就是这个网络输出层。输出层仍然只是一个线性回归模型,只不过现在它作用于 h 而不是 x。网络现在包含链接在一起两个函数:h = f(1)(x; W , c) y = f(2)(h; w

    作者: 小强鼓掌
    951
    3
  • 认识深度学习

    什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域一部分。简而言之,人工智能涉及教计算机思考人类思维方式,其中包括各种不同应用,例如计算机视觉、自然语言处理机器学习。 机器学习是人工智能一个子集,它使计算机在没有明确编程情况下能够更好地完成

    作者: 建赟
    1845
    2
  • 深度学习模型介绍

    深度神经网络:深度学习模型有很多,目前开发者最常用深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1762
    2
  • 深度优先遍历与广度优先遍历:探索图与树策略

    在计算机科学中,图数据结构是解决复杂问题基石。遍历这些结构是理解操作它们基础步骤。两种基本遍历策略——深度优先遍历(Depth-First Search, DFS)广度优先遍历(Breadth-First Search, BFS)——为我们提供了探索这些结构不同视角。本

    作者: 炒香菇的书呆子
    12
    0
  • 深度学习简介

    与传统学习方法相比,深度学习方法预设了更多模型参数,因此模型训练难度更大,根据统计学习一般规律知道,模型参数越多,需要参与训练数据量也越大。 20世纪八九十年代由于计算机计算能力有限相关技术限制,可用于分析数据量太小,深度学习在模式分析中并没有表现出优异识别性能。自从2006年,

    作者: 某地瓜
    1683
    1
  • 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    候,结果就越精确。 2. 增强学习蒙特卡罗方法 现在我们开始讲解增强学习蒙特卡罗方法,与上篇DP不同是,这里不需要对环境完整知识。蒙特卡罗方法仅仅需要经验就可以求解最优策略,这些经验可以在线获得或者根据某种模拟机制获得。 要注意是,我们仅将蒙特卡罗方法定义在episode

    作者: 格图洛书
    发表时间: 2021-12-29 16:55:31
    449
    0
  • 深度学习现实应用《深度学习与Mindspore实践》今天你读书了吗?

    换成文本技术。从早期基于模板方法到严格统计模型,再到如今深度模型,语音识别技术已经经历了几代更迭。 图像识别图像识别是深度学习最成功应用之一。深度学习在计算机视觉领域突破发生在2012年,Hinton教授研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet

    作者: QGS
    1026
    2
  • 二种遍历-广度优先遍历深度优先遍历

    深度优先遍历 1.树深度优先遍历 树深度优先遍历有点类似于先根遍历 首先遍历 1 2 5 6 3  4 7 8 ,它遍历更趋向于先深层遍历树。 ​ 编辑 2.图深度优先遍历 首先我们可以先看一下2,2相邻是1号结点6号结点。2相邻的

    作者: 莫浅子
    发表时间: 2022-12-09 03:04:48
    100
    0
  • 深度学习深度模型中优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到诸多优化问题中,最难是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见。因为这其中优化

    作者: 小强鼓掌
    338
    1
  • 深度学习之机器学习基础

    深度学习是机器学习一个特定分支。要想学好深度学习,必须对机器学习基本原理有深刻理解。本章将探讨贯穿本书其余部分一些机器学习重要原理。我们建议新手读者或是希望更全面了解读者参考一些更全面覆盖基础知识机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    841
    2
  • 学习笔记 - 梯度提升联手图神经网络 - 增强再卷积

    先前的GNN模型主要集中在具有同质稀疏特征网络上,在异构环境中次优。 在此提出了一种新颖体系结构,该体系结构可以联合训练GBDTGNN以获得两者最佳选择:GBDT模型处理异构特征,而GNN负责图结构。通过允许新树适合GNN梯度日期,该模型受益于端到端优化。 通过与领先GBDTGNN模型进行广泛实验比

    作者: RabbitCloud
    626
    3
  • 图像增强

    vgg19,模型500多m,效果还行 https://github.com/aiff22/DPED  opencv #include <QCoreApplication>#include<opencv2/highgui/highgui.h

    作者: 风吹稻花香
    发表时间: 2021-06-04 17:45:48
    461
    0