检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"application/json" }, "response": { "Content-type": "application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。
调失败。 “train_params.json” 必选文件,训练参数文件,定义了模型训练的必要参数,例如训练方式、超参信息。该参数会显示在微调工作流的“作业设置”页面的算法配置和超参数设置里面。代码示例请参见train_params.json示例。 “dataset_readme
自定义镜像模型部署为在线服务时出现异常 问题现象 在部署在线服务时,部署失败。进入在线服务详情页面,“事件”页签,提示“failed to pull image, retry later”,同时在“日志”页签中,无任何信息。 图1 部署在线服务异常 解决方法 出现此问题现象,通常
"application/json" }, "response": { "Content-type": "application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。
在ModelArts中使用自定义镜像创建在线服务,如何修改端口? 当模型配置文件中定义了具体的端口号,例如:8443,创建模型没有配置端口,或者配置了其他端口号,均会导致服务部署失败。您需要把模型中的端口号配置为8443,才能保证服务部署成功。 修改默认端口号,具体操作如下: 登
文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config.json至falcon-11B的tokenizer目录下,样例命令: 进入到代码目录下{work_dir}/llm_
文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config.json至falcon-11B的tokenizer目录下,样例命令: 进入到代码目录下{work_dir}/llm_
文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config.json至falcon-11B的tokenizer目录下,样例命令: 进入{work_dir}/..........
都会传递参数,用于构建实际处理数据的hanler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/data/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDatasetHandle
文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config.json至falcon-11B的tokenizer目录下,样例命令: 进入到代码目录下{work_dir}/llm_
文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config.json至falcon-11B的tokenizer目录下,样例命令: 进入到代码目录下{work_dir}/llm_
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
文件,需要替换代码。替换文件{work_dir}/tokenizers/falcon-11B/config.json,具体步骤如下: 复制代码包目录下config.json至falcon-11B的tokenizer目录下,样例命令: 进入到代码目录下{work_dir}/llm_
创建如下compare.json文件。 { "npu_path": "./npu_dump/dump.json", "bench_path": "./bench_dump/dump.json", "stack_path": "./npu_dump/stack.json", "is_print_compare_log":
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
ModelArts在线服务处于运行中时,如何填写request header和request body? 问题现象 部署在线服务完成且在线服务处于“运行中”状态时,通过ModelArts console的调用指南tab页签可以获取到推理请求的地址,但是不知道如何填写推理请求的header及body。
ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突? 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内
都会传递参数,用于构建实际处理数据的hanler对象,并根据handler对象对数据集进行解析。文件路径在:ModelLink/modellink/tasks/preprocess/data_handler.py。 基类BaseDatasetHandler解析 data_handler的基类是BaseDataset
服务部署 自定义镜像模型部署为在线服务时出现异常 部署的在线服务状态为告警 服务启动失败 服务部署、启动、升级和修改时,拉取镜像失败如何处理? 服务部署、启动、升级和修改时,镜像不断重启如何处理? 服务部署、启动、升级和修改时,容器健康检查失败如何处理? 服务部署、启动、升级和修改时,资源不足如何处理?