检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。 标注质量对于最终的模型精度有极大的影响,标注过程中尽量不要出现误标情况。 音频标注涉及到的标注标签和声音内容只支持中文和英文,不支持小语种。
出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新创建训练作业。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取模型ID。 进入“AI应用管理>AI应用”页面,在AI应用列表中找到自动学习任务中自动创建的模型,自动学习产生的模型都是以“exeML-”开头的。单击
单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练数据集中的图片相似才可能预测准确。
AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进
自动学习声音分类预测报错ERROR:input key sound is not in model 根据在线服务预测报错日志ERROR:input key sound is not in model inputs可知,预测的音频文件是空。预测的音频文件太小,换大的音频文件预测。 父主题:
完成数据标注后,可进行模型的训练。模型训练的目的是得到满足需求的文本分类模型。由于用于训练的文本,至少有2种以上的分类(即2种以上的标签),每种分类的文本数不少于20个。因此在单击“继续运行”按钮之前,请确保已标注的文本符合要求。 操作步骤 在新版自动学习页面,单击项目名称进入运行
【下线公告】华为云ModelArts自动学习模块的文本分类功能下线公告 华为云计划于2024/12/06 00:00(北京时间)将AI开发平台ModelArts自动学习模块的文本分类功能正式下线。 下线范围 下线Region:华为云全部Region。 下线影响 ModelArts自动学习-文本分类正式下
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。
时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续
【下线公告】华为云ModelArts算法套件下线公告 华为云ModelArts服务算法套件将在2024年6月30日00:00(北京时间)正式退市。 下线范围 下线Region:华为云全部Region。 下线影响 正式下线后,ModelArts Notebook中将不会预置算法套件相关工具ma-cau和ma-c
txt 文本分类的标注对象和标注文件均为文本文件,并且以行数进行对应。如标注文件中的第一行表示的是标注对象文件中的第一行的标注。 例如,标注对象“COMMENTS_114745.txt”的内容如下所示。 手感很好,反应速度很快,不知道以后怎样 三个月前买了一个用的非常好果断把旧手机替换下来尤其在待机方面
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
下线旧版自动学习对现有用户的使用是否有影响? 用户将无法再使用旧版自动学习的功能,且因旧版自动学习文件均存储于ModelArts统一管理账号下,用户无法找回旧版自动学习的作业记录。 旧版自动学习如何升级到新版自动学习? 请参考新版自动学习指导文档来体验新版自动学习。 父主题: 下线公告
至少有两种以上的分类,每种分类的样本不少于20张。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据上传至OBS 在本文档中,采用通过OBS管理控制台将数据上传至OBS桶。 上传OBS的文件规范: 文件名规范:不能有+、空格、制表符。
出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新部署在线服务。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取服务ID。 进入“部署上线>在线服务”页面,在服务列表中找到自动学习任务中部署的在线服务,自动学习部署的服务都是以“exeML-”开头的。单击服务
修改已标注的数据 针对“已标注”的文本数据,仅支持删除此文本对象的标签。在“已标注”页签下,在标签名称区域单击标签右上角的叉号,即可删除此文本对象的标签。标签删除后,此文本对象将被呈现至“未标注”页签下。 图3 删除已标注文本的标签 修改标签 针对文本分类的自动学习项目,项目创
需要更多的图片。用于训练的图片,至少有1种以上的分类,每种分类的图片数不少50张。 标注时,类内方差尽量要小。即相同类别的标注,尽量近似;不同类别的标注,尽量保持差距较大。 标记的每个标签尽量和背景有较大的区分度。 物体检测标注,需要保证目标框内物体的完整性;针对图片中存在多个物体的情形,做到不重标、不漏标。
使用自动学习实现声音分类 准备声音分类数据 创建声音分类项目 标注声音分类数据 训练声音分类模型 部署声音分类服务 父主题: 使用自动学习实现零代码AI开发
使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发
对单一的场景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。