检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习预测分析项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可输入代码进行测试。在“自动学习”页面,在服务部署节点,单击“实例详情”进入“在线服务”界面,在“预测”页签的“预测代码”区域,输入调试代码。
准备文本分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 文件格式要求为txt或者csv,文件大小不能超过8MB。 以换行符作为分隔符,每行数据代表一个标注对象。 文本分类目前只支持中文。
数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 父主题: 使用自动学习实现图像分类
【下线公告】华为云ModelArts算法套件下线公告 华为云ModelArts服务算法套件将在2024年6月30日00:00(北京时间)正式退市。 下线范围 下线Region:华为云全部Region。 下线影响 正式下线后,ModelArts Notebook中将不会预置算法套件相关工具ma-cau和ma-c
服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习图像分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“在服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在
准备数据 数据集版本发布失败 数据集版本不合格 父主题: 自动学习
所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0
数据源,反复调整优化。 训练模型 俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。训练模型的结果通常是一个或多个机器学习或深度学习模型,模型可以应用到新的数据中,得到预测、评价等结果。 业界主流的A
部署上线 部署上线失败 父主题: 自动学习
模型训练 自动学习训练作业失败 父主题: 自动学习
详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习声音分类项目页面将模型部署之后进行服务测试的操作步骤。 模型部署完成后,您可添加音频文件进行测试。在“自动学习”页面,选择服务部署节点,单击实例详情,进入“模型部署”界面,选择状态为“运行中”的
模型发布 模型发布失败 父主题: 自动学习
上传算法至SFS 下载Swin-Transformer代码。 git clone --recursive https://github.com/microsoft/Swin-Transformer.git 修改lr_scheduler.py文件,把第27行:t_mul=1. 注释掉。
上传数据和算法至OBS(首次使用时需要) 前提条件 已经在OBS上创建好并行文件系统,请参见创建并行文件系统。 已经在obsutil安装和配置,请参见obsutils安装和配置。 准备数据 单击下载动物数据集至本地,并解压。 通过obsutil将数据集上传至OBS桶中。 ./obsutil
上传数据和算法至SFS(首次使用时需要) 前提条件 ECS服务器已挂载SFS,请参考ECS服务器挂载SFS Turbo存储。 在ECS中已经创建ma-user和ma-group用户,请参考在ECS中创建ma-user和ma-group。 已经安装obsutil,请参考下载和安装obsutil。
详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习文本分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可添加文本进行测试。在“自动学习”页面,选择目标项目,进入“模型部署”界面,选择状态为“运行中”的服务版本,在“服务
服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习物体检测项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“服务部署”节点,单击“实例详情”按钮,进入服务预测界面,在“
所有超参搜索算法的列表。 表3 search_algo_list 参数 参数类型 描述 name String 超参搜索算法的名称。 params Array of params objects 超参搜索算法的参数列表。 description String 超参搜索算法的描述。 表4
SDK开发和调测流水线。 运行态:可视化配置运行生产好的流水线。 Workflow基于对当前ModelArts已有能力的编排,基于DevOps原则和实践,应用于AI开发过程中,提升了模型开发与落地效率,更快地进行模型实验和开发,并更快地将模型部署到生产环境。 工作流的开发态和运行态分别实现了不同的功能。