检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
export USE_PFA_HIGH_PRECISION_MODE=1 # PFA算子是否使用高精度模式;默认值为0表示不开启。针对Qwen2-7B模型和Qwen2-57b模型,必须开启此配置,否则精度会异常;其他模型不建议开启,因为性能会有损失。
标注为难例的数据,对后续模型训练中,通过内置规则提升模型精度。 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备>数据标注”,单击“我创建的”页签可查看所有作业列表。
因此,数据校验非常重要,可以帮助人工智能开发者提前发现数据问题,有效防止数据噪声造成的算法精度下降或者训练失败问题。 数据清洗:数据清洗是指对数据进行去噪、纠错或补全的过程。 数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
存放数据集及基线数据 |──trainer.py # 训练启动脚本 |──performance.py # 训练性能比较启动脚本 |──accuracy.py # 训练精度启动脚本
模型NPU卡数取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推 表1 模型NPU卡数取值表 支持模型 支持模型参数量 文本序列长度 训练类型 Zero并行 规格与节点数 llama3 70B cutoff_len
精度评测和性能评测。具体请参考推理服务精度评测和推理服务性能评测。 父主题: 投机推理
模型精度有问题怎么办? 首先考虑通过FP16的方式进行转换和执行,再通过精度诊断工具来进行分析,更进一步可以到华为云官网上提交工单处理。 模型转换失败时如何查看日志和定位原因? 在模型转换的过程,如果出现模型转换失败,可以参考以下步骤查看日志并定位原因: 设置DEBUG日志。
config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。
抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。
抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。
如果想要将固定shape的模型精度修改为fp32进行转换,需要在配置文件中指定算子的精度模式为precision_mode,配置文件的写法如下(更多精度模式请参考precision_mode): # text_encoder.ini [ascend_context] input_shape
ModelArts Standard训练作业和模型部署如何收费? Standard中训练作业如何收费? 如果您使用的是公共资源池,则根据您选择的规格、节点数、运行时长进行计费。计费规则为“规格单价×节点数×运行时长”(运行时长精确到秒)。 如果您使用的是专属资源池,则训练作业就不再进行单独计费
资源易获取,按需收费,按需扩缩,支撑故障快恢与断点续训 企业在具体使用大模型接入企业应用系统的时候,不仅要考虑模型体验情况,还需要考虑模型具体的精度效果,和实际应用成本。 MaaS提供灵活的模型开发能力,同时基于昇腾云的算力底座能力,提供了若干保障客户商业应用的关键能力。
1代表图像分类 2代表检测物体的类别和位置 3代表图像语义分割 4代表自然语言处理 5图嵌入 model_precision String 模型精度描述。 model_size Long 模型大小,单位为字节(Byte)。
抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。
├──llm_tools #推理工具包 ├──llm_evaluation #推理评测代码包 ├──benchmark_eval # 精度评测 ├── config ├── config.json
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval #精度评测
ModelArts支持的超参搜索功能,在无需算法工程师介入的情况下,即可自动进行超参的调优,在速度和精度上超过人工调优。