检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ignore 系统已自动过跳过这张图片,不需要用户处理。 2 tf-decode failed 图片无法被TensorFlow解码且不能修复 ignore 系统已跳过这张图片,不需要用户处理。 3 size over 图片大于5MB resize to small 系统已将图片压缩到5MB以内处理,不需要用户处理。
创建工作空间 功能介绍 创建工作空间("default"为系统预留的默认工作空间名称,不能使用)。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/
数据未保存至/cache目录或者/home/ma-user/目录(/cache会软连接成/home/ma-user/),导致数据占满系统目录。系统目录仅支持系统功能基本运行,无法支持大数据存储。 部分训练任务会在训练过程中生成checkpoint文件,并进行更新。如更新过程中,未删除历
当裸金属服务器预置的NVIDIA版本和业务需求不匹配时,需要更换NVIDIA驱动和CUDA版本。本文介绍华为云A系列GPU裸金属服务器(Ubuntu20.04系统)如何从“NVIDIA 525+CUDA 12.0”更换为“NVIDIA 515+CUDA 11.7”。 操作步骤 卸载原有版本的NVIDIA和CUDA。
exec format error”。 这种报错一般是因为所用镜像系统引擎和构建镜像的系统引擎不一致引起的,例如使用的是x86的镜像却标记的是arm的系统架构。 可以通过查看模型详情看到配置的系统运行架构。基础镜像的系统架构详情可以参考推理基础镜像列表。 父主题: 模型管理
挂载在系统目录下,如“/”、“/var/run”等,会导致容器异常。建议挂载在空目录下,若目录不为空,请确保目录下无影响容器启动的文件,否则文件会被替换,导致容器启动异常,工作负载创建失败。 storage_type 否 String 挂载类型sfs_turbo极速文件系统挂载。
A系列裸金属服务器使用CUDA cudaGetDeviceCount()提示CUDA initializat失败 问题现象 在A系列GPU裸金属服务器上,系统环境是ubuntu20.04+nvidia515+cuda11.7,使用Pytorch2.0时出现如下错误: CUDA initialization:
问题现象 通过API接口选择自定义镜像导入创建模型,配置了运行时依赖,没有正常安装pip依赖包。 原因分析 自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。
在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。如果您需要解决“内存不够”的问题,
自动学习和订阅算法有什么区别? 针对不同目标群体,ModelArts提供不同的AI开发方式。 如果您是新手,推荐您使用自动学习实现零代码模型开发。当您使用自动学习,系统会自动选择适合的算法和适合的参数进行模型训练。 如果您是AI开发进阶者,通过订阅算法进行模型训练有更多算法上的选择,并且您可以自定义训练所需的参数。
on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker size大小时,会提示镜像内空间不足。 处理方法 公共资源池容器Docker size的大小最大支持50G,专属资源池Docker
2/use/downloads.html 需要下载的安装包与操作系统有关,请根据需要选择合适的安装包。 如果操作系统为Linux aarch64,请下载mindspore-lite-2.2.10-linux-aarch64.tar.gz。 如果操作系统为Linux x86_64,请下载mindspore-lite-2
在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。 如果您需要解决“内存不够”的问题
Library)环境变量 OBS环境变量 PIP源环境变量 API网关地址环境变量 作业元信息环境变量 约束限制 为了避免新设置的环境变量与系统环境变量冲突,而引起作业运行异常或失败,请在定义自定义环境变量时,不要使用“MA_”开头的名称。 如何修改环境变量 用户可以在创建训练作业
A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用Ubuntu20.04操作系统默认已经安装IB驱动。) 操作步骤 方法1:使用mlx硬件计数器,估算ROCE网卡收发流量 统计300s内流量,统计脚本如下: x=$(cat
orch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64架构的主机,操作系统ubuntu-18.04,通过编写Dockerfile文件制作自定义镜像。 目标:构建安装如下软件的容器镜像,并在ModelArts平台上
背景说明 目前大模型的参数量已经达到千亿甚至万亿,随之大模型的体积也越来越大。千亿参数大模型的体积超过200G,在版本管理、生产部署上对平台系统产生了新的要求。例如:导入模型时,需要支持动态调整租户存储配额;模型加载、启动慢,部署时需要灵活的超时配置;当负载异常重启,模型需要重新加载,服务恢复时间长的问题亟待解决。
镜像中使用的AI引擎是PyTorch,训练使用的资源是专属资源池的Ascend芯片。 准备工作 准备一套可以连接外部网络,装有Linux系统并安装18.09.7及以上版本docker的虚拟机或物理机用作镜像构建节点,以下称“构建节点”。 可以通过执行docker pull、apt-get
问题现象 原因分析 原因分析一:密钥文件未放在指定路径,详情请参考安全限制或VS Code文档。请参考解决方法一处理。 原因分析二:当操作系统为macOS/Linux时,可能是密钥文件或放置密钥的文件夹权限问题,请参考解决方法二处理。 解决方法 解决方法一: 请将密钥放在如下路径或其子路径下:
2版本或者最新版本进行远程连接。 VS Code安装指导如下: 图2 Windows系统下VS Code安装指导 Linux系统下,执行命令sudo dpkg -i code_1.85.2-1705561292_amd64.deb安装。 Linux系统用户,需要在非root用户进行VS Code安装。 父主题: