B或者GB级别的profiling数据下载至本地后才能使用msprof-analyze进行分析,大量数据的下载耗时以及对本地大规格存储盘的要求容易导致分析受阻。为了能自动串联高性能挂载OBS至ModelArts环境和msprof-analyze的分析能力,ModelArts Standard
容器镜像OS:hce_2.0 PyTorch:pytorch_2.1.0 FrameworkPTAdapter:6.0.RC2 如果用到CCE,版本要求是CCE Turbo v1.25及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.906-xxx.zip
MA-Factory/data 将自定义原始数据(样例数据集:alpaca_gpt4_data.json.json)按照下面的数据存放目录要求放置。 样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/datas
A-Factory/data 将自定义原始数据(指令监督微调样例数据集:alpaca_gpt4_data.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json的下载链接:https://huggingface.co/datase
tory/data 将自定义原始数据(指令监督微调样例数据集:alpaca_gpt4_data.json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/d
tory/data 将自定义原始数据(指令监督微调样例数据集:alpaca_gpt4_data.json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json.json的下载链接:https://huggingface.co/d
这样可以保证可用区的独立性。是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。 如果您使用了CloudPond
Finetune训练使用单机8卡资源。 Lora训练使用单机单卡资源。 Controlnet训练使用单机单卡资源。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称
tory/data 将自定义原始数据(指令监督微调样例数据集:alpaca_gpt4_data.json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json的下载链接:https://huggingface.co/datase
tory/data 将自定义原始数据(指令监督微调样例数据集:alpaca_gpt4_data.json.json)按照下面的数据存放目录要求放置。 指令微调样例数据集alpaca_gpt4_data.json的下载链接:https://huggingface.co/datase
严格遵照版本配套关系使用本文档。 Finetune训练使用单机8卡资源。 Lora训练使用单机单卡资源。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称
PyTorch:pytorch_2.1.0 MindSpore:MindSpore 2.3.0 FrameworkPTAdapter:6.0.RC2 如果用到CCE,版本要求是CCE Turbo v1.25及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.907-xxx.zip
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下
12MB,超过12MB时,请求会被拦截。 使用ModelArts console的预测页签进行的预测,由于console的网络链路的不同,要求请求体的大小不超过8MB。 图2 请求报错APIG.0201 APIG.0301 鉴权失败 通过API进行服务预测,或者使用Token进行
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下
置里面。代码示例请参见train_params.json示例。 “dataset_readme.md” 必选文件,数据集要求说明,定义了模型训练时对数据集的要求,会显示在微调工作流的“准备数据”页面。 “requirements.txt” 非必选文件,环境配置文件,定义了项目依赖的python包。AI
0、pytorch_2.2.0 MindSpore:MindSpore 2.3.0 FrameworkPTAdapter:6.0.RC3 如果用到CCE,版本要求是CCE Turbo v1.28及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.908-xxx.zip
购买Cluster资源。 本方案目前仅适用于企业客户,并且需要用户具备k8s集群相关技能。 资源规格要求 推荐使用“西南-贵阳一”Region上的Cluster资源 表1 环境要求 名称 版本 CANN cann_8.0.rc2 PyTorch pytorch_2.1.0 获取软件和镜像
是否进行数据校验,可填True或者False。表示数据清洗前需要进行数据校验,否则只进行数据清洗。 输入要求 算子输入分为两种,“数据集”或“OBS目录”。 选择“数据集”,请从下拉框中选择ModelArts中管理的数据集及其版本。要求数据集类型与您在本任务中选择的场景类别一致。 选择“OBS目录”,存放结构
/home/ma-user/work/model/llama-2-13b-chat-hf 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。
您即将访问非华为云网站,请注意账号财产安全