检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
PyTorch:pytorch_2.1.0 MindSpore:MindSpore 2.3.0 FrameworkPTAdapter:6.0.RC2 如果用到CCE,版本要求是CCE Turbo v1.25及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.907-xxx.zip
0、pytorch_2.2.0 MindSpore:MindSpore 2.3.0 FrameworkPTAdapter:6.0.RC3 如果用到CCE,版本要求是CCE Turbo v1.28及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.908-xxx.zip
严格遵照版本配套关系使用本文档。 Finetune训练使用单机8卡资源。 Lora训练使用单机单卡资源。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下
ORIGINAL_HF_WEIGHT /home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。
ORIGINAL_HF_WEIGHT /home/ma-user/ws/model/llama2-70B 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。
/home/ma-user/work/model/llama-2-13b-chat-hf 必须修改。加载tokenizer与Hugging Face权重时,对应的存放地址。请根据实际规划修改。 SHELL_FOLDER $(dirname $(readlink -f "$0")) 表示执行脚本时的路径。
ModelArts支持用户构建自定义镜像用于模型训练。自定义镜像需上传至容器镜像服务(SWR),才能用于云上训练。 由于自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置引擎无法满足需求,否则不推荐使用。 使用自定义镜像创建训练作业 AI应用管理 Mod
置里面。代码示例请参见train_params.json示例。 “dataset_readme.md” 必选文件,数据集要求说明,定义了模型训练时对数据集的要求,会显示在微调工作流的“准备数据”页面。 “requirements.txt” 非必选文件,环境配置文件,定义了项目依赖的python包。AI
是否进行数据校验,可填True或者False。表示数据清洗前需要进行数据校验,否则只进行数据清洗。 输入要求 算子输入分为两种,“数据集”或“OBS目录”。 选择“数据集”,请从下拉框中选择ModelArts中管理的数据集及其版本。要求数据集类型与您在本任务中选择的场景类别一致。 选择“OBS目录”,存放结构
购买Cluster资源。 本方案目前仅适用于企业客户,并且需要用户具备k8s集群相关技能。 资源规格要求 推荐使用“西南-贵阳一”Region上的Cluster资源 表1 环境要求 名称 版本 CANN cann_8.0.rc2 PyTorch pytorch_2.1.0 获取软件和镜像
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如
12MB,超过12MB时,请求会被拦截。 使用ModelArts console的预测页签进行的预测,由于console的网络链路的不同,要求请求体的大小不超过8MB。 图2 请求报错APIG.0201 APIG.0301 鉴权失败 通过API进行服务预测,或者使用Token进行
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如
服务升级关系着业务实现,不当的升级操作会导致升级期间业务中断的情况,请谨慎操作。 ModelArts支持部分场景下在线服务进行无损滚动升级。按要求进行升级前准备,做好验证,即可实现业务不中断的无损升级。 表1 支持无损滚动升级的场景 创建模型的元模型来源 服务使用的是公共资源池 服务使用的是专属资源池
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如
alpacaGPT4/alpaca_gpt4_data.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下
py,目的是为开发者提供模型预处理和后处理的逻辑。 图16 推理模型model目录示意图(需要用户自己准备模型文件) 推理脚本customize_service.py的具体写法要求可以参考模型推理代码编写说明。 本案例中提供的customize_service.py文件具体内容如下: import logging import
- 设置在线服务是否部署为WebSocket服务。了解在线服务支持WebSocket,请参考WebSocket在线服务全流程开发。 说明: 要求模型的元模型来源为从容器镜像中选择,并且镜像支持WebSocket。 设置“升级为WebSocket”后,不支持设置“服务流量限制”。 “