检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
rts是否在同一区域。 创建OBS桶时,桶的存储类别请勿选择“归档存储”,归档存储的OBS桶会导致模型训练失败。 OBS桶路径和文件夹命名要求如下: {OBS桶}:OBS对象桶,用户可以自定义名称,例如:test-modelarts-xx {OBS文件夹}:OBS文件夹,自定义名称,此处举例为pytorch
单击“预测”查看预测结果。此处提供一个样例图片供预测使用。 本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范围和要求,不满足条件的图片会影响预测结果的准确性。 步骤5:清理资源 体验结束后,建议暂停或删除服务,避免占用资源,造成资源浪费。 停止在线服务:
以参考案例服务预测失败解决。 预测结果的准确性取决于模型本身。本案例中使用的订阅模型可以识别81类常见超市商品,模型对预测图片有一定范围和要求,不满足条件的图片会影响预测结果的准确性。 后续操作:清理资源 体验结束后,建议停止服务,避免占用资源,造成不必要的计费。 停止在线服务:在ModelArts
cn-north-1.myhuaweicloud.com/v3/auth/tokens 请求消息头 附加请求头字段,如指定的URI和HTTP方法所要求的字段。例如定义消息体类型的请求头“Content-Type”,请求鉴权信息等。 需要添加到请求中的公共消息头如表3所示。 表3 公共请求消息头
自动学习的每个项目对数据有哪些要求? 图像分类对数据集的要求 文件名规范:不能有+、空格、制表符。 保证图片质量:不能有损坏的图片,目前支持的格式包括jpg、jpeg、bmp、png。 不要把明显不同的多个任务数据放在同一个数据集内。 每一类数据尽量多,尽量均衡。期望获得良好效果
创建预测分析自动学习项目时,对训练数据有什么要求? 数据集要求 文件规范:名称由以字母数字及中划线下划线组成,以'.csv'结尾,且文件不能直接放在OBS桶的根目录下,应该存放在OBS桶的文件夹内。如:“/obs-xxx/data/input.csv”。 文件内容:文件保存为“c
图片清晰程度,使用拉普拉斯算子计算所得,值越大代表边缘越清晰,图片整体越清晰。 可根据使用场景判断清晰度是否满足需要。比如使用场景的数据采集来自高清摄像头,那么清晰度对应的需要高一些。可通过对数据集做锐化或模糊操作,添加噪声对清晰度做调整。 图像色彩的丰富程度 Colorfulness 横坐
为方技术支持购买DevServer资源。 本方案目前仅适用于企业客户。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B单机单卡。 表1 环境要求 名称 版本 PyTorch pytorch_2.1.0 驱动 23.0.5 获取软件和镜像
为方技术支持购买DevServer资源。 本方案目前仅适用于企业客户。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B单机单卡。 表1 环境要求 名称 版本 PyTorch pytorch_2.1.0 驱动 23.0.6 获取软件和镜像
iles and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例:
"method" : "post", "param_name" : "face_location", "param_type" : "box", "param_desc" : "face_location param value description" }
iles and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例:
iles and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例:
若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf