检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内。检测框对应的文本描
剩余全部驳回:样本抽中的通过的,不需要标注了,未通过和样本未抽中的需要重新标注验收。 图10 完成验收 查看验收报告 针对进行中或已完成的标注任务,都可以查看其验收报告。登录管理控制台,选择“数据准备>数据标注”,在数据标注页选择“我创建的”,并单击某条团队标注的任务名称,进入标注详
index必须是从0开始的正整数,当index设置不规则不符时,最终的请求将忽略此参数。配置映射规则后,其对应的csv数据必须以英文半角逗号分隔。 “输出数据目录位置” 选择批量预测结果的保存位置,可以选择您创建的空文件夹。 “实例规格” 系统将根据您的模型匹配提供可用的计算资源。请在下
导出ModelArts数据集中的数据到OBS 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,当需要将数据集中的数据存储至OBS用于后续导出使用时,可通过此种方式导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测
传”按钮上传示例图片,然后单击“预测”。 预测完成后,预测结果显示区域将展示预测结果,根据预测结果内容,可识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模
资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在镜像详情页,选择“镜像介绍”页签,单击右侧“编辑介绍”。 编辑镜像基础设置和镜像描述。 表1 镜像介绍的参数说明 参数名称 说明 基础设置 中文名称 显示镜像的名称,不可编辑。 README
2适配 本章节介绍Flux模型使用Diffusers 0.30.2框架的推理过程。使用官方提供的已经训练好的模型进行推理,输入prompt生成指定像素的图片。 使用如下命令登录huggingface,并输入个人账号的token,用于自动下载flux权重。 huggingface-cli
ion的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
编排Workflow Workflow的编排主要在于每个节点的定义,您可以参考创建Workflow节点章节,按照自己的场景需求选择相应的代码示例模板进行修改。编排过程主要分为以下几个步骤。 梳理场景,了解预置Step的功能,确定最终的DAG结构。 单节点功能,如训练、推理等在ModelArts相应服务中调试通过。
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务
导出ModelArts数据集中的数据 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。 目前只有“图像分类”、“物体检测”、“图像分割”类型的数据集支持导出功能。 “图像分类”只支持导出txt格式的标注文件。 “物体检测”只支持导出Pascal
ize仅支持1,那么模型推理输入的图片数只能是1张;如果当前转换的mindir模型的batchsize支持多个,比如1,2,4,8,那么模型推理输入的图片数可以是1,2,4,8。 如果使用动态batch模型,需要将infer.py中如下图红框中的两行代码取消注释。 图2 修改infer
传”按钮上传示例图片,然后单击“预测”。 预测完成后,预测结果显示区域将展示预测结果,根据预测结果内容,可识别出此图片的数字是“2”。 本案例中使用的MNIST是比较简单的用做demo的数据集,配套算法也是比较简单的用于教学的神经网络算法。这样的数据和算法生成的模型仅适用于教学模
导出ModelArts数据集中的数据为新数据集 针对数据集中的数据,用户可以选中部分数据或者通过条件筛选出需要的数据,导出成新的数据集。用户可以通过任务历史查看数据导出的历史记录。本章主要介绍将ModelArts数据集中的数据为新数据集的方式,新导出的数据集可直接在ModelArts控制台数据集列表中显示。
Snt9B开展SD3.5模型的训练过程。 资源规格要求 推荐使用“西南-贵阳一”Region上的Lite Server资源和Ascend Snt9B单机。 表1 环境要求 名称 版本 driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类
Turbo高性能文件存储中,数据预热功能的具体操作请参考创建SFS Turbo 和 OBS 之间的联动任务。 在ECS服务器挂载SFS Turbo已经将SFS Turbo挂载到了/mnt/sfs_turbo目录,这里参考obsutil文档,直接使用obsutil命令将OBS桶中的所有数据拷贝到该目录即可。
912软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信
907软件包中的AscendCloud-AIGC-6.3.907-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务