检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
流通图片类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 单个图片类数据集支持发布的格式为: 默认格式:平台默认的格式。 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 创建文本类数据集流通任务步骤如下: 登录ModelArts
配比图片类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至流通图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts St
标注图片类数据集 创建图片类数据集标注任务 标注图片类数据集任务前,请先完成数据导入操作,具体步骤请参见导入数据至盘古平台。 创建图片类数据集标注任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
评估图片类数据集 创建图片类数据集评估标准 ModelArts Studio大模型开发平台针对图片类数据集预设了一套基础评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准
其中,before文件夹:包含变化前的图片,每幅图片需与变化后的图片同名、同尺寸。 after文件夹:包含变化后的图片,每幅图片需与变化前的图片同名、同尺寸。 label文件夹:包含与变化前和变化后图片同名、同尺寸的PNG文件。每个像素值代表该位置对应的类别信息,类别应是连续的且从0开始。 视频分类
发布图片类数据集 评估图片类数据集 配比图片类数据集 流通图片类数据集 父主题: 发布数据集
通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。 图片去重 通过把图片结构化处理后,过滤重复的图片/图文对数据。 数据打标 图片鉴黄评分 对图片的涉黄程度进行评分,
加工图片类数据集 清洗图片类数据集 标注图片类数据集 父主题: 加工数据集
清洗图片类数据集 清洗图片类数据集任务前,请先完成数据导入操作,具体步骤请参见导入数据至盘古平台。 创建图片类数据集清洗任务 创建图片类数据集清洗任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
升数据质量。 清洗图片类数据集、清洗视频类数据集 标注图片、视频类数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 标注图片类数据集、标注视频类数据集
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,平台还支持导入其他类数据集,即用户训练模型时使用的自定义数据集。 其他类数据集支持发布其他类数据集操作,不支持数据加工操作。 其他类数据集要求单个文件大小不超过50GB,单个压缩包大小不超过50GB,文件数量最多1000个。
并根据设定的轮数生成新数据。通过数据合成技术,可以生成大量高质量的训练数据,这些数据可以用于大模型的预训练,增强模型的泛化能力和性能。 数据标注:平台支持对无标签的数据添加标签或对现有的标签进行重新标注,以提升数据集的标注质量。用户可以针对不同的数据集灵活地选择对应的标注项,还可
上传完成后,单击“确定”,完成知识库的创建。 知识库创建完成后,如果想在当前知识库中继续上传文件,可单击该知识库进入详情页面,再单击右上角“继续上传”,上传本地文件。 知识库命中测试 平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最
确保数据质量和适配性 数据发布功能通过数据评估和配比,确保发布的数据集满足大模型训练的高标准。这不仅包括数据规模的要求,还涵盖了数据质量、平衡性和代表性的保证,避免数据不均衡或不具备足够多样性的情况,进而提高模型的准确性和鲁棒性。 提高数据的多样性和代表性 通过合理的数据配比,帮
数据集清洗算子介绍 文本类清洗算子能力清单 视频类清洗算子能力清单 图片类清洗算子能力清单 气象类清洗算子能力清单 父主题: 加工数据集
不同来源和格式的数据导入平台。 支持的接入方式:通过OBS服务导入数据。 支持的数据类型:文本、图片、视频、气象、预测、其他。 自定义格式:用户可以根据业务需求上传自定义格式的数据,提升数据获取的灵活性和可扩展性。 通过这些功能,用户可以轻松将大量数据导入平台,为后续的数据加工和模型训练等操作做好准备。
强训练模型的多样性和泛化能力。 标注数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 发布数据集 评估数据集 平台预置了多种数据类型的基础评估标
加工数据集 数据集加工场景介绍 数据集清洗算子介绍 加工文本类数据集 加工图片类数据集 加工视频类数据集 加工气象类数据集 管理加工后的数据集 父主题: 使用数据工程构建数据集
权限控制的场景,安全性较高。 API Key鉴权:通过唯一的API Key来认证应用之间的访问权限,可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥值,安全性较低。 请求头 插件服务的请求头。添加请求的数据格式等说明,敏感信息请通过权限校验的方式实现。
选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性。建议不要与温度同时调整。 温度 用于控制生成结果的随机性。调高温度,会使得模型的输出更具多样性和创新性;降