检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在ModelArts数据集中添加图片对图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片,其图片大小限制不同,要求上传的图片大小不超过5MB。
如何删除ModelArts数据集中的图片? 登录ModelArts管理控制台,左侧菜单栏选择“数据管理>数据标注”,进入数据标注列表,单击需要删除图片的数据集,进入标注详情页。 在“全部”、“未标注”或“已标注”页面中,依次选中需要删除的图片,或者“选择当前页”选中该页面所有图片,然后单击删除。在
在ModelArts自动学习中模型训练图片异常怎么办? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段
在ModelArts中如何将图片划分到验证集或者训练集? 目前只能指定切分比例,随机将样本划分到训练集或者验证集,不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。
在ModelArts中同一个账户,图片展示角度不同是为什么? 有的图片存在旋转角度等属性,不同的浏览器的处理策略不同,对浏览器的兼容性如表1和表2所示。 L代表last,L3-产品版本上线时最新的3个稳定浏览器版本。 如果您当前使用的浏览器版本过低,将在一定程度上影响页面的显示效果,系统会提示您尽快对浏览器进行升级。
在复核页面,单击“按照标签过滤”,选择需要复核的标签类型图片。 在当前页面,您可以选择对当前的标签类型的图片,按照标注面积排序,或按照宽高比排序。 依次单击需要复核的图片,在标注页面拖动图片的标注框,即可重新完成标注。(修改后的图片会带有“已修改”的信息。) 您也可以选中需要删除标签的图片,单击右上方的,删除原始的
看已完成标注的图片,或者通过右侧的“全部标签”列表,了解当前已完成的标签名称和标签数量。 同步或添加图片 在“数据标注”节点单击“实例详情”进入数据标注页面,数据标注的图片来源有两种,通过本地添加图片和同步OBS中的图片数据。 图3 添加本地图片 图4 同步OBS图片数据 添加数
训练图像分类模型 完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。
计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应在所有图片个数相加超过100张,如果某些图片的标签具有相似性,
生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(32GB),约耗时9.3秒。 图2 生成图片耗时(2) 不开启Flash
集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有1种以上的分类(即1种以上的标签),每种分类的图片数不少于5张。
是观感上的色彩丰富程度,一般用于比较训练集和真实场景数据集的差异。 按单张图片中框的个数统计图片分布 Bounding Box Quantity 横坐标:单张图片中框的个数。 纵坐标:图片数量。 对模型而言一张图片的框个数越多越难检测,需要越多的这种数据用作训练。 按单张图片中框的面积标准差统计图片分布 Standard
度更高的模型。首先,针对智能标注和采集筛选任务,难例的发现操作是系统自动执行的,无需人工介入,仅需针对标注后的数据进行确认和修改即可,提升数据管理和标注效率。其次,您可以基于难例的情况,补充类似数据,提升数据集的丰富性,进一步提升模型训练的精度。 在数据集管理中,对难例的管理有如下场景。
查询处理任务列表,包括“特征分析”任务和“数据处理”两大类任务。可通过指定“task_type”参数来单独查询某类任务的列表。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或者生
墨西哥城二。 标注作业支持的数据类型 对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频
目前只有“图像分类”和“物体检测”类型的标注作业支持智能标注功能。 启动智能标注时,需标注作业存在至少2种标签,且每种标签已标注的图片不少于5张。 启动智能标注时,必须存在未标注图片。 启动智能标注前,保证当前系统中不存在正在进行中的智能标注任务。 检查用于标注的图片数据,确保您的图片数据中,
您选中的数据,执行自动分组,提升您的数据标注效率。 自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 例如,用户通过搜索引擎搜索XX,将相关图片下载并上传到数据集,然后再使用自动分组,可以将XX图片分类,比
创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽
在pipeline适配完成后,需要验证适配后的效果是否满足要求,通过对比原始onnx pipeline的最终输出结果确认迁移效果。如果精度和性能都没有问题,则代表迁移完成。 对比图片生成效果 在CPU上推理onnx,将原始onnx和适配完成的MindSpore Lite pipeline输出的结果图片进行对比,在
2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6:图像的高宽比与训练数据集的特征分布存在较大偏移。 7:图像的亮度与训练数据集的特征分布存在较大偏移。