检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
框架时,请选择您使用的引擎所对应的运行时环境。目前支持的运行时环境列表请参见推理支持的AI引擎。 需要注意的是,如果您的模型需指定CPU或GPU上运行时,请根据runtime的后缀信息选择,当runtime中未包含cpu或gpu信息时,请仔细阅读“推理支持的AI引擎”中每个runtime的说明信息。
Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。
对单一的场景,将下图识别为汽车的图片。 图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。
在数据标注页面,单击右侧的“标签管理”,在标签管理页,显示全部标签的信息。 修改标签:单击操作列的“修改”按钮,在弹出的对话框中输入修改后的标签名、选择修改后的快捷键,然后单击“确定”完成修改。修改后,之前添加了此标签的音频,都将被标注为新的标签名称。 删除标签:单击操作列的“删除”按钮,
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值
} ] } 数据输出的data文件夹中存放的是修改、更新过的图片,对于数据处理过程中没有修改过的图片,在data文件夹中不会展示,图片的位置信息显示该图片在输入目录中。 output.manifest存放的是数据处理之后的图片信息(主要是指图片的位置和标注信息等),可以直接使用这个output
添加了此标签的图片,都将被标注为新的标签名称。 删除标签:单击操作列“删除”,之前添加了此标签的图片,都将删除此标签。 图3 标签管理 图4 全部标签的信息 单击标注作业操作列的“标签”,可跳转至标签管理页。 单击操作列的“修改”,即可完成标签的修改。 单击操作列的“删除”,即可删除该标签。
增量训练的操作步骤 登录ModelArts管理控制台,单击左侧导航栏的自动学习。 在自动学习项目管理页面,单击对应的项目名称,进入此项目的自动学习详情页。 在数据标注页面,单击未标注页签,在此页面中,您可以单击添加图片,或者增删标签。 如果增加了图片,您需要对增加的图片进行重新标注。如
为True。 Saturation 色度饱和度增强,对图片的HSV中的H和S空间做线性的变化,改变图片的色度和饱和度。 do_validation:数据扩增前是否进行数据校验。默认值为True。 Scale 图片缩放,将图片的长或宽随机缩放到一定倍数。 scaleXY:缩放方向,X为水平,Y为垂直。默认值为X
数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片过程中引入的重复图片、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度
Standard数据准备 在ModelArts数据集中添加图片对图片大小有限制吗? 如何将本地标注的数据导入ModelArts? 在ModelArts中数据标注完成后,标注结果存储在哪里? 在ModelArts中如何将标注结果下载至本地? 在ModelArts中进行团队标注时,为什么团队成员收不到邮件?
据标注要求,选择创建不同类型的数据集。 填写数据集基本信息,数据集的“名称”和“描述”。 选择“标注场景”和“标注类型”,本案例中分别选择“图片”和“物体检测”。 图1 数据集标注场景和标注类型 选择OBS中的数据目录作为“数据集输入位置”,选择不同的OBS目录作为“数据集输出位置”。
多模态(Multimodality)是集成和处理两种或两种以上不同类型的信息或数据的方法和技术。具体来说,在机器学习和人工智能领域,多模态涉及的数据类型通常包括但不限于文本、图像、视频、音频和传感器数据。 多模态的主要目标是利用来自多种模态的信息来提升任务的表现力,提供更丰富的用户体验,或是获取更全
prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框
prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框
确保OBS中的文件是非加密状态 上传图片或文件时不要选择KMS加密,否则会导致数据集读取失败。文件加密无法取消,请先解除桶加密,重新上传图片或文件。 图3 OBS桶中的文件未加密 检查图片是否符合要求 目前自动学习不支持四通道格式的图片。请检查您的数据,排除或删除四通道格式的图片。 检查标注框是否符合要求(物体检测)
其中x_center、y_center、width和height分别表示归一化后的目标框中心点x坐标、归一化后的目标框中心点y坐标、归一化后的目标框宽度、归一化后的目标框高度。 只支持JPG、JPEG、PNG、BMP格式的图片,单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 图像分割
Gallery”并选中列表中的一个资产。 下载至OBS桶位置(数据集输入位置):选择一个空目录用来存储下载的数据集。 数据集输出位置:数据集输出位置的OBS路径,此位置会存放输出的标注信息等文件,此位置不能和OBS数据源中的文件路径相同或为其子目录,请确保您的OBS文件名称以字母、数字或下划线命名。
数据源信息,详细请见表3。 width Long 图片长度。 height Long 图片高度。 depth Long 图片深度。 segmented String 分割。 mask_source String 图像分割得到的mask文件的云存储路径,目前只支持PNG格式。 voc_objects
扩散模型在噪音和随机数上的生成,本身就有一定的随机性,GPU和NPU(Ascend)硬件由于存在一定细小的差别,很难确保完全一致,较难达成生成图片100%匹配,建议通过盲测的方式对效果进行验证。 模型精度有问题怎么办? 首先考虑通过FP16的方式进行转换和执行,再通过精度诊断