检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集格式要求 文本类数据集格式要求 图片类数据集格式要求 视频类数据集格式要求 气象类数据集格式要求 预测类数据集格式要求 其他类数据集格式要求 父主题: 使用数据工程构建数据集
发布数据集 数据集发布场景介绍 发布文本类数据集 发布图片类数据集 发布视频类数据集 发布气象类数据集 发布预测类数据集 发布其他类数据集 管理发布后的数据集 父主题: 使用数据工程构建数据集
Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。 针对“零码”开发者(无代码开发经
据设定的轮数生成新数据。该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 标注数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。
在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面对复杂的、长链条的流程时可
合成文本类数据集 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成新数据。该过程能够在一定程度上扩展数据集,增强训练模型的多样性和泛化能力。 合成文本类数据集 标注文本类数据集 为无标签数据集添加准确的标签,确保模型训练所需的高质量数据。平台支持人工标注和AI预标注两种方式,
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}
功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业API后,在这个
据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数据的多样性,能够提升模型在各种场景下的泛化能力,增强其对未知数据的适应性。 增强模型训练的有效性
功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业API后,在这个
返回。这样的设计使得Agent能够智能处理复杂任务,甚至跨领域解决问题,实现对复杂问题的自动化处理。 Agent开发平台支持两种类型的插件: 预置插件:平台为开发者和用户提供了预置插件,直接可用,无需额外开发。例如,平台提供的“Python解释器插件”能够根据用户输入的问题自动生
String 是否输出结果图片,取值true/false,默认true。 forecast_features 否 String 确定性预报的输出要素,例如“Surface:U;1000:T;800:?abc”。 可选择的要素参考表8中,提供的全球海洋要素模型的深海变量和海表变量。 表8 中期海洋智能预测模型信息
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
用于配置大模型的输出多样性。 包含取值: 精确的:模型的输出内容严格遵循指令要求,可能会反复讨论某个主题,或频繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。
Engineering)是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将大语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户更好地了解大语言模型的能力和局限性。 提示词工程不仅是关于设计和研发提示词,它包含了与大语言模型交互和研发的各种技能和技术。提示工程
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
通过智能客服处理大部分的常规问题,将人工客服释放出来处理更复杂、更个性化的客户需求;个性化服务:基于大模型的智能客服能够学习和适应用户的行为模式和偏好,提供更加个性化的服务。 农业 科学计算大模型包括全球中期天气要素模型和降水模型,可以对未来一段时间的天气和降水进行预测,全球中期
定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种方法可以更好地表达预报的不确定性,从而提高预报的准确性和可靠性。 取值范围:[2, 10]。 ensemble_forecast_features 否 String 集合预报的输出要素
增强模型的泛化能力。取值范围:[0,1]。 给输出数据加噪音的尺度 定义了给输出数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 优化器种类 优化器种类 优化器是用于更新模型参数的算法,目前支持ADAM优化器。