检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Token转换比 模型规格 Token比(Token/英文单词) Token比(Token/汉字) N1 0.75 1.5 N2 0.88 1.24 N4 0.75 1.5 针对Token转换比,平台提供了Token计算器功能,可以根据您输入的文本计算Token数量,您可以通过以下方式使用该功能:
INT8:该压缩策略将模型参数压缩至8位字节,可以有效降低推理显存占用。 INT4:该压缩策略与INT8相比,可以进一步减少模型的存储空间和计算复杂度。 配置资源。选择计费模式并设置训练单元。 可选择开启订阅提醒。开启后,系统将在本次压缩任务状态变更时,向用户发送短信/邮件提醒。 填写基
视频类清洗算子能力清单 数据清洗算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的清洗操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
的多样性和代表性。这样可以避免过度偏向某一类数据,保证模型能够学习到多种特征,提升对各种情况的适应能力。 多格式支持 对于文本类、图片类数据集,平台支持多种数据发布格式,包括“默认格式”、“盘古格式”,以满足不同训练任务的需求。通过这些格式的转换,用户可以确保数据与特定模型(如盘古大模型)兼容,并优化训练效果。
全球中期天气要素预测:通过该模型可以对未来一段时间的天气进行预测。 全球中期降水预测:通过该模型可以对未来一段时间的降水情况进行预测。 模型服务 支持选择用于启动推理作业的模型。 中期天气要素模型包括1h分辨率、3h分辨率、6h分辨率、24小时分辨率模型,即以起报时刻开始,分别可以逐1h、3h、6h、24h往后进行天气要素的预测。
据。通过数据合成技术,可以生成大量高质量的训练数据,这些数据可以用于大模型的预训练,增强模型的泛化能力和性能。 数据标注:平台支持对无标签的数据添加标签或对现有的标签进行重新标注,以提升数据集的标注质量。用户可以针对不同的数据集灵活地选择对应的标注项,还可以自定义选择多人标注、审
cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 ensemble_noise_perlin_scale
大模型推理失败时触发该错误码。 请检查模型服务是否可以正常运行。 插件节点 101741 插件组件初始化失败。 检查插件组件配置,可能为校验报错。 101742 工作流插件节点参数类型转换时出错。 根据error message确定具体转换出错的参数名称,并确认类型是否正确。 101743
包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相
多场景测试-不同语言对 复杂对话场景:如图4,当用户在对话中频繁切换意图时,测试意图识别节点的应答能力,确保其能够理解并适应多变的对话上下文。 图4 多场景测试-复杂对话场景 优化Prompt设计:从prompt设计维度来看,可以通过以下方式进行优化: 清晰的输入指令: 在翻译场景中,明
user。 如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content表示对话的内容,可以是任意文本。 messages参数可以帮助模型根据对话的上下文生成合适的回复。 数组长度:1
默认值:0 核采样 控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。 默认值:1.0 最大口令限制 用于控制聊天回复的长度和质量。 默认值:2048 话题重复度控制 用于控制生成文本中的重复程度。调高参数模型会更频繁地切换话题,从而避免生成重复内容。 默认值:0 词汇重复度控制
盘古大模型是否可以自定义人设 大模型支持设置人设,在用户调用文本对话(chat/completions)API时,可以将“role”参数设置为system,让模型按预设的人设风格回答问题。 以下示例要求模型以幼儿园老师的风格回答问题: { "messages": [
要让模型按照特定风格回复,可以提供领域和角色信息(如目标受众或特定场景),帮助模型理解并捕捉预期风格。 可以在提示词中,明确描述回复风格的要求。例如,若希望模型回答更精炼,可以提示: 你的回复“需要简洁精炼”、“仅包括最重要的信息”或“专注于主要结论”。 若希望模型输出遵循特定格式,可以在提示词中
如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应答可以无缝实时更新。(搜索+大模型解决方案) 父主题:
在评测任务列表中,任务创建者可以对任务进行克隆(复制评测任务)、启动(重启评测任务)和删除操作。 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型评测”,可进行如下操作: 克隆。单击操作列的“ 克隆”,可以复制当前评测任务。
转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人工客服,可以处理更多的客户咨询,且响应速度快;降低运营成本:企业可以通过智能客服处理大部分的常规问题,将人工客服释放出来处理更复杂、更个性化的客户需求;个性
泛化能力越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或失败的任务可以通过训练日志定位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训
评估任务创建完成后,会跳转至“评估”页面,在该页面可以查看评估状态。 图1 查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果