检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。 图1 精度诊断流程 一般情况下,onnx模型推理的结果可以认为是标杆数据,单独替换某个onnx模型为MindSpore Lite模型,运行得到的结果再与标杆数据做
ModelArts.4711 数据集标注样本数满足算法要求 每个类别至少包含5张以上图片。 ModelArts.4342 标注信息不满足切分条件 出现此故障时,建议根据如下建议,修改标注数据后重试。 多标签的样本(即一张图片包含多个标签),至少需要有2张。如果启动训练时,设置了数据集切分功能,
描述 add_sample_count Integer 处理后新增的图片数量。 create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。
预测结果文件:文件格式为“xxx.manifest”,里面包含文件路径、预测结果等信息。 模型预测结果输出: 当输入为图片时,每张图片输出一个结果,输出结果格式为“图片名_result.txt”。例如:IMG_20180919_115016.jpg_result.txt。 当输入为音
原因分析 文件夹“.ssh”的权限不仅是Windows当前用户拥有,或者当前用户权限不足,故修改权限即可。 解决方案 找到.ssh文件夹。一般位于“C:\Users”,例如“C:\Users\xxx”。 “C:\Users”目录下的文件名必须和Windows登录用户名完全一致。 右键单击
s-input.jpg python onnx_pipeline.py 生成的图片fantasy_landscape.png会保存在当前路径下,该图片也可以作为后期精度校验的一个对比。 图2 生成图片 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
文件型数据从Manifest导入操作 不同类型的数据集,导入操作界面的示意图存在区别,请参考界面信息了解当前类型数据集的示意图。当前操作指导以图片数据集为例。 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理>数据集”,进入“数据集”管理页面。 在数据集所在行,单击操作
get_data_to_numpy() print(outputs.shape) # (8, 1000) 动态分辨率 动态分辨率可以用于设置输入图片的动态分辨率参数。适用于执行推理时,每次处理图片宽和高不固定的场景,该参数需要与input_shape配合使用,input_shape中-1的位置为动态分辨率所在
uUtil”、“memUsage”“npuMemUsage”、“npuUtil”、可以添加或取消对应参数的使用情况图。 操作三:鼠标悬浮在图片上的时间节点,可查看对应时间节点的占用率情况。 表1 参数说明 参数 说明 cpuUsage cpu使用率。 gpuMemUsage gpu内存使用率。
AI应用封面图 否 上传一张AI应用封面图,AI应用创建后,将作为AI应用页签的背景图展示在AI应用列表。建议使用16:9的图片,且大小不超过7MB。 如果未上传图片,AI Gallery会为AI应用自动生成封面。 应用描述 否 输入AI应用的功能介绍,AI应用创建后,将展示在AI应用页签上,方便其他用户了解与使用。
"[{\"label\":\"batch_size\",\"value\":\"4\",\"placeholder_cn\":\"每次更新训练的图片数量(总)\",\"placeholder_en\":\"\",\"required\":true},{\"label\":\"lr\",\"value\":\"0
带controlnet时需要,此时image_path需要赋值null,传入图片的base64编码值,非必选 image_base64 带controlnet时需要,和image_path二选一,传入图片的base64编码值,非必选 父主题: AIGC模型训练推理
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下:
sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。启动命令如下: sh run.sh 图6 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图7 手写数字图片 图8 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'image
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下:
create_time Long 版本创建时间。 crop Boolean 是否对图片进行裁剪,只对标注框形状为bndbox的物体检测数据集有效。可选值如下: true:对图片进行裁剪 false:不对图片进行裁剪(默认值) crop_path String 裁剪后的文件存放路径。
txt", "w") as f: df.to_csv(f) 利用文件对象读取图片 使用opencv打开一张图片时,无法传入一个OBS路径,需要利用文件对象读取,考虑以下代码是无法读取到该图片的。 1 2 import cv2 cv2.imread('obs://bucket_name/xxx
团队标注使用流程 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能当前仅支持“图像分类”、“物体检测”、“文本分类”、“命名实体”、“文本三元组”、“语音分割”类型的数据集。
导入“物体检测”类型数据集前,您需要保证标注文件的标注范围不超过原始图片大小,否则可能存在导入失败的情况。 表1 不同类型数据集支持的导入方式 数据集类型 标注类型 OBS目录导入 Manifest文件导入 图片 图像分类 支持 可以导入未标注或已标注数据 已标注数据格式规范:图像分类