检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
团队标注使用流程 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能当前仅支持“图像分类”、“物体检测”、“文本分类”、“命名实体”、“文本三元组”、“语音分割”类型的数据集。
Code端的实例目录和云上目录不匹配。 原因分析 实例连接错误,可能是配置文件写的不规范导致连接到别的实例。 解决方案 检查用户.ssh配置文件(路径一般在“C:\Users\{User}\.ssh\config”下),检查每组配置文件是否规范:Host必须放在每组配置的第一行,作为每组配置的唯一ID。
创建Notebook失败,查看事件显示JupyterProcessKilled。 图1 查看事件 原因分析 出现此故障是因为Jupyter进程被清理掉了,一般情况Notebook会自动重启的,如果没有自动重启,创建一直失败,请确认是否是自定义镜像的问题。 解决方案 排查是否是自定义镜像的问题。
带controlnet时需要,此时image_path需要赋值null,传入图片的base64编码值,非必选 image_base64 带controlnet时需要,和image_path二选一,传入图片的base64编码值,非必选 附录2:Dockerfile 基于Docker
在弹出的对话框中,设置“抽样策略”,可设置为“按百分比”,也可以设置为“按数量”。设置好参数值后,单击“确定”启动验收。 “按百分比”:按待验收图片总数的一定比例进行抽样验收。 “按数量”:按一定数量进行抽样验收。 图6 发起验收 验收启动后,界面将展示实时验收报告,您可以在右侧选择“验收结果”(“通过”或“不通过”)。
导出数据到OBS 登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理>数据集”,进入“数据集”管理页面。 在数据集列表中,选择“图片”类型的数据集,单击数据集名称进入“数据集概览页”。 在“数据集概览页”,单击右上角“导出 ”。在弹出的“导出”对话框中,填写相关信息,然后单击“确定”,开始执行导出操作。
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下:<img> </img>
选择“form-data”。在“KEY”值填写模型的入参,和在线服务的输入参数对应,比如本例中预测图片的参数为“images”。然后在“VALUE”值,选择文件,上传一张待预测图片(当前仅支持单张图片预测),如图4所示。 图4 填写Body 文本输入 选择“raw”,选择JSON(appl
越大。一般适用于计算资源需求量长期稳定的成熟业务。 按需计费:一种后付费模式,即先使用再付费,按照ModelArts计算资源的实际使用时长计费,秒级计费,按小时结算。按需计费模式允许您根据实际业务需求灵活地调整资源使用,无需提前预置资源,从而降低预置过多或不足的风险。一般适用于资源需求波动的场景,可以即开即停。
对于中小规模团队,管理员希望对ModelArts资源进行主导分配,全局控制,而对于普通开发者只需关注自己实例的生命周期控制。对于开发者账号,一般不会具有te_admin的权限,相应的权限也需要主账号进行统一配置。本章节以使用Notebook进行项目开发为例,通过自定义策略配置实现管理员和开发者分离。
sh,并预测模型。基础镜像中默认提供了run.sh作为启动脚本。 图9 运行启动脚本 上传一张预测图片(手写数字图片)到Notebook中。 图10 手写数字图片 图11 上传预测图片 重新打开一个新的Terminal终端,执行如下命令进行预测。 curl -kv -F 'imag
准备一个图像分类算法(或者可以直接从AI Gallery搜索订阅一个“图像分类-ResNet_v1_50”算法)。 准备一个图片类型的数据集,请参考准备数据集。可从AI Gallery直接下载(例如:8类常见生活垃圾图片数据集)。 from modelarts import workflow as wf # 定义统一存储对象管理输出目录
离线训练安装包准备说明 申请的模型软件包一般依赖联通网络的环境。若用户的机器或资源池无法联通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载
创建算法 机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式
这样的数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定范围和要求,预测图片必须和训练集中的图片相似(黑底白字)才可能预测准确。 图8 示例图片 图9 预测结果展示 后续操作:清除资源 如果不再需要使用此模型及在线服务,建议清除相关资源,避免产生不必要的费用。
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下:<img> </img>
服务状态一直处于“部署中” 问题现象 服务状态一直处于“部署中”,查看模型日志未发现服务有明显错误。 原因分析 一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。
"black-forest-labs/FLUX.1-schnell" h_list :生成图片的长,默认为 [688, 1024] w_list: 生成图片的宽,默认为 [1024, 1024] INFER_STEP:推理步数,默认20步 推理完成后,生成的图片保存在 ${container_work_dir}/flux/result
}, { "from": "assistant", "value": "第一张图片是重庆的城市天际线,第二张图片是北京的天际线。" } ] } ] 为针对多样的VL任务,特殊tokens如下:<img> </img>
--image-input-shape:输入图片维度,当前不支持图片动态维度,如果图片不是(1,336,336)shape,将会被resize。 --image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: