检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理部署计费项 计费说明 在ModelArts进行服务部署时,会产生计算资源和存储资源的累计值计费。计算资源为运行推理服务的费用。存储资源包括数据存储到OBS的计费。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。
设置相关参数如下: 元模型来源:选择“从对象存储服务(OBS)中选择”。 选择元模型:从OBS中选择一个模型包。 AI引擎:选择“Custom”。 引擎包:从容器镜像中选择一个镜像。 容器调用接口:端口和协议可根据镜像实际使用情况自行填写。 其他参数保持默认值。 单击“立即创建
docker tag tf-1.13.2:latest swr.实际域名.com/deep-learning/tf-1.13.2:latest 使用docker push命令上传镜像。 sudo docker push swr.实际域名.com/deep-learning/tf-1.13.2:latest
上传到SWR服务中。 选择公开镜像:直接输入SWR服务中公开镜像的地址。地址直接填写“组织名称/镜像名称:版本名称”,不需要带域名信息,系统会自动拼接域名地址。 代码来源 选择训练代码来源。 对象OBS存储:如果训练代码存放在OBS中,则选择“对象OBS存储”。 文件存储:如果训
ModelArts在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端
在ModelArts Studio大模型即服务平台完成模型创建后,可以对模型进行调优,获得更合适的模型。 场景描述 从“我的模型”中选择一个模型进行调优,当模型完成调优作业后会产生一个新的模型,呈现在“我的模型”列表中。 约束限制 表1列举了支持模型调优的模型,不在表格里的模型不支持使用MaaS调优模型。
NetB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。 处理方法 使用单标签分类的数据集进行训练。 父主题: 数据集问题导致训练失败
请求URI 参数 说明 URI-scheme 传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint 承载REST服务端点的服务器域名或IP,不同服务在不同区域时,对应Endpoint不同,可以从终端节点中获取。 例如IAM服务在“华北-北京一”区域的Endpoint为“iam
lArts平台会在APIG上注册一个预测接口提供给用户使用,用户可以通过平台提供的预测接口访问服务。 自定义引擎创建模型的规范 使用自定义引擎创建模型,用户的SWR镜像、OBS模型包和文件大小需要满足以下规范: SWR镜像规范: 镜像必须内置一个用户名为“ma-user”,组名为
署方式,需要机器在同一个集群,NPU卡之间IP能够ping通方可,具体步骤如下: 查看卡IP,在其中一个宿主机上执行。 for i in $(seq 0 7);do hccn_tool -i $i -ip -g;done 检查卡之间的网络是否通。 # 在另一个机器上执行,29.81
Arts支持从不同数据源导入数据。 从OBS导入数据到ModelArts数据集 从DLI导入数据到ModelArts数据集 从MRS导入数据到ModelArts数据集 从DWS导入数据到ModelArts数据集 从本地上传数据到ModelArts数据集 文件型数据来源 文件型数据
步骤3:在模型体验使用模型服务:在模型体验页面,体验部署的模型服务,进行对话问答。 准备工作 已注册华为账号并开通华为云,且在使用ModelArts前检查账号状态,账号不能处于欠费或冻结状态。 配置委托访问授权 ModelArts使用过程中涉及到与OBS、SWR等服务交互,首次使用ModelArts需要用户配置委托授权,允许访问这些依赖服务。
发布镜像到AI Gallery 除了Gallery提供的已有资产外,还可以将个人创建的资产发布至Gallery货架上,供其他AI开发者使用,实现资产共享。 镜像资产上架 登录AI Gallery,选择右上角“我的Gallery”。 在“我的资产 > 镜像”下,选择未发布的镜像,单击镜像名称,进入镜像详情页。
发布模型到AI Gallery 除了Gallery提供的已有资产外,还可以将个人创建的资产发布至Gallery货架上,供其他AI开发者使用,实现资产共享。 模型资产上架 登录AI Gallery,选择右上角“我的Gallery”。 在左侧“我的资产 > 模型”下,选择未发布的模型,单击模型名称,进入模型详情页。
托管镜像到AI Gallery 创建镜像资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。
${your_image:tag} 在容器中输入如下命令,得到pytorch.tar.gz: # run on container # 基于想要迁移的base环境创建一个名为pytorch的conda环境 conda create --name pytorch --clone base pip install
场景介绍 本小节通过一个具体问题案例,介绍模型精度调优的过程。 如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0
h_1_8。 图8 打开开发环境 单击图中的pytorch_1_8,即可创建一个ipynb文件,导入torch,可以看到安装的pytorch 1.8已经能够使用。 图9 创建一个ipynb文件 再打开一个Terminal,查看ffmpeg和gcc的版本,是Dockerfile中安装的版本。
登录容器镜像服务控制台。 单击右上角“创建组织”,输入组织名称完成组织创建。请自定义组织名称,本示例使用“deep-learning”,下面的命令中涉及到组织名称“deep-learning”也请替换为自定义的值。 选择左侧导航栏的“总览”,单击页面右上角的“登录指令”,在弹出的页面中单击复制登录指令。
/命令,报错[Errno 13] Permission denied……。 原因分析 当前目录下包含没有权限的文件。 解决方法 建议用户新建一个文件夹(例如:tb_logs),将tensorboard的日志文件(例如:tb.events)放到新建的文件夹下,然后执行tensorboard命令。示例命令如下: