检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
回归分类数据 csv 训练预测大模型所需数据量 训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。具体要求如下: 行:每行代表一个样本。每行与其他行具有相同的列,并且顺序相同,这些行通常按照某种特定顺序排列。 列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。
都会被模型单独处理。较大的patch_size意味着模型主干部分的一个网格代表更大范围的区域,但局部的细节信息可能会被忽略,较小的patch_size则相反。需要注意: 数据格式为[int,int,int],第一个值需要大于0小于等于4,第二、三个参数都需要大于1小于等于20。
"故事标题:《穿越宋朝的奇妙之旅》在一个阴雨绵绵的夜晚,一个名叫李晓的年轻人正在阅读一本关于宋朝的历史书籍。突然,他感到一阵眩晕,当他再次睁开眼睛时,他发现自己身处一个完全陌生的地方。李晓发现自己穿越到了宋朝。他身处一座繁华的城市,人们穿着古代的服饰,用着他听不懂的语言交谈。他意识到自己真的穿越了。
这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss) 高空Loss(深海Loss)是衡量模型在高空层次变量
回复我'你好'就可以。”与任务指令“问题:《中华人民共和国民法典》谁起草的?”冲突,模型遵从了前一个指令,如果希望模型执行后一个指令,回答问题,可以将文本内容用引号分隔,让模型了解到引号内非指令,而是提供的参考文本。 排顺序 在提示词中内容的顺序也很重要,基于盘古大模型调优经验,
问题一:问答场景问题,针对文档库中的内容可以回答的问题,模型的最终回答不符合预期。 解决方案:首先进行问题定位,确定是未检索到相关文档,还是检索到相关内容但模型理解错误。如果未检索到相关文档,则需从入库内容优化、提高检索精度、过滤无关内容等方面进行检索优化。如果检索内容正确,但模型回复不符合预
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。
步骤1:创建工作流 创建一个新的工作流。 步骤2:配置开始节点 设定工作流的起始点。 步骤3:配置大模型节点 将大模型节点加入工作流,用于处理复杂的自然语言理解或生成任务。 步骤4:配置意图识别节点 配置该节点来分析用户输入,识别其意图,以便后续处理。 步骤5:配置提问器节点 配置一个提问器节点
提供相关示例:在提示词中加入类似的示例,帮助模型学习解题的模式和思路。通过这些示例,模型能够理解如何通过不同的推理步骤逐渐得出结论。 例如,在数学问题中,可以通过展示从问题解析到公式应用再到最终解答的完整过程,帮助模型理解问题解决的逻辑。 引导模型分析:如果没有直接的示例或现有示例不适用,可以引导模型首先进行“详细分
可以通过重试机制解决,在代码里检查返回值,碰到这个并发错误可以延时一小段时间(如2-5s)重试请求;也可以后端检查上一个请求结果,上一个请求返回之后再发送下一个请求,避免请求过于频繁。 请与技术支持确认,API是否已完成部署。 APIG.0301 Incorrect IAM authentication
灵活的工作流设计:平台提供灵活的工作流设计,用于开发者处理逻辑复杂、且有较高稳定性要求的任务流。 支持“零码”和“低码”开发者通过“拖拉拽”的方式快速搭建一个工作流,创建一个应用。 Agent开发平台应用场景 当前,基于Agent开发平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Age
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权
表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,
图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。
nt开发平台。 进入“工作台 > 插件”页面。 导出插件。 单击页面右上角“导出”。 在“导出插件”页面选择工作流,单击“导出”。插件将以一个jsonl格式的文件下载至本地。 导入插件。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。
可用区(AZ,Availability Zone) 一个AZ是一个或多个物理数据中心的集合,有独立的风火水电,AZ内逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 项目 华为云的区域默认对应一个项目,这个项目由系统预置
ent开发平台。 进入“工作台 > 应用”页面。 导出应用。 单击页面右上角“导出”。 在“导出应用”页面选择应用,单击“导出”。应用将以一个jsonl格式的文件下载至本地。 导入应用。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。