检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
不在同一个主账号下,如何使用他人的自定义镜像创建Notebook? 不是同一个主账号,用户A需要使用用户B的自定义镜像创建Notebook,此时需要用户B将此镜像共享给用户A,用户A将此共享镜像Pull下来注册后方可在Notebook中使用。详细操作如下: 用户B的操作: 登录容
GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML 问题现象 华为云裸金属服务器,NVIDIA驱动卸载后重新安装。 (1)已卸载原有版本NVIDIA驱动和CUDA版本,且已安装新版本的NVIDIA驱动和CUDA版本 (2)执行nvidia-smi失败,提示Failed
使用AOE工具可以在模型转换阶段对于模型运行和后端编译过程进行执行调优。请注意AOE只适合静态shape的模型调优。在AOE调优时,容易受当前缓存的一些影响,建议分两次进行操作,以达到较好的优化效果(第一次执行生成AOE的知识库,在第二次使用时可以复用)。在该场景中,AOE对text_encoder等模
ModelArts中的作业为什么一直处于等待中? 当前训练任务排队的逻辑是先进先出,前面的任务没运行完后面的任务不会运行,有可能会造成小任务被“饿死”,需要用户注意。 饿死指的是前面的任务被一个大的任务堵着(例如是64卡),需要等空闲64卡这个任务才能运行,64卡的任务后面跟着1
然后使用DataArts执行此脚本的任务时提示没有这个库。 原因分析 客户创建了多个虚拟环境,numba库安装在了python-3.7.10中,如图1所示。 图1 查询创建的虚拟环境 解决方案 在Terminal中执行conda deactivate命令退出当前虚拟环境,默认进入base环境。执行pip
理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输入进行推理,并统计推理时间。执行的示例命令行如下。 # shell benchmark --modelFile=resnet50
数配置。 样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加,样例截图如下: 步骤二:执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定 单机<可选>: # 默认8卡 ascendfactory-cli
的换行格式不同,Windows下是CRLF,而Linux下是LF。 解决方法 可以在Notebook中转换文件格式为Linux格式。 shell语言: dos2unix 文件名 父主题: 代码运行故障
进入代码目录/home/ma-user/ws/llm_train/AscendFactory/scripts_llamafactory下执行启动脚本,先修改以下命令中的参数,再复制执行。 # 单机执行命令为:sh demo.sh <MASTER_ADDR=localhost> <NNODES=1> <NODE_RANK=0>
问题现象 在Notebook的Terminal中执行tensorboard --logdir ./命令,报错[Errno 13] Permission denied……。 原因分析 当前目录下包含没有权限的文件。 解决方法 建议用户新建一个文件夹(例如:tb_logs),将tensorboard的日志文件(例如:tb
团队标注功能是以团队为单位进行管理,数据集启用团队标注功能时,必须指定一个团队。一个团队可以添加多个成员。新添加的团队,其成员列表为空。您需要根据实际情况添加即将参与标注任务的成员信息。 一个账号最多可添加10个团队。一个团队最多支持添加100个成员,当超过100时,建议分为多个团队进行管理。 如果数据集需要启用团
在ModelArts的Notebook中内置引擎不满足使用需要时,如何自定义引擎IPython Kernel? 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1
插件代码包 AscendCloud-6.3.910软件包中的AscendCloud-AIGC-6.3.912-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912 版本。 说明:
name: prometheus namespace: default 执行如下命令创建RBAC对应的各个资源。 $ kubectl create -f prometheus-rbac-setup.yml clusterrole "prometheus" created serviceaccount
重新启动镜像激活SFS盘中的虚拟环境 保存并共享虚拟环境 前提条件 创建一个Notebook,“资源类型”选择“专属资源池”,“存储配置”选择“SFS弹性文件服务器”,打开terminal。 创建新的虚拟环境并保存到SFS目录 创建新的conda虚拟环境。 # shell conda create
submit命令提交DLI Spark作业 执行ma-cli dli-job submit命令提交DLI Spark作业。 ma-cli dli-job submit命令需要指定一个位置参数YAML_FILE表示作业的配置文件路径,如果不指定该参数,则表示配置文件为空。配置文件是一个YAML格式的文件,
Workflow是一个有向无环图(Directed Acyclic Graph,DAG),由节点和节点之间的关系描述组成。 图1 Workflow介绍 节点与节点之间的依赖关系由单箭头的线段来表示,依赖关系决定了节点的执行顺序,示例中的工作流在启动后将从左往右顺序执行。DAG也支持多
卡ID,如指定5号卡进行执行。 # mslite_pipeline.py … os.environ['DEVICE_ID'] = "5" … 最后执行python脚本进行推理: # shell python mslite_pipeline.py 图2 执行推理脚本 图3 MindSpore
当Notebook实例创建完成后,且状态为“运行中”时,单击“操作”列中的“打开”,进入“JupyterLab Notebook”开发页面。 在JupyterLab的“Launcher”页签下,以TensorFlow为例,您可以单击TensorFlow,创建一个用于编码的文件。 图1 选择不同的AI引擎
长训Loss比对结果 在单卡环境下,执行一个Epoch训练任务,GPU和NPU训练叠加效果如下: 上图中的红色曲线为GPU Loss折线图,蓝色曲线为NPU训练Loss折线图。在整网训练单个Epoch情况下,Loss总体的绝对偏差大约为0.08181。 父主题: 精度对齐