检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
下载SD基础模型,SD基础模型的官网下载地址。 https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors https://huggingface.c
#在myenv的环境中安装名字为numpy的package conda install -c https://conda.anaconda.org/anaconda numpy #使用源 https://conda.anaconda.org/anaconda 安装numpy conda
理。 设置模型的参数,如图13所示。 元模型来源:从容器镜像中选择。 容器镜像所在的路径:单击选择前面创建的镜像。 容器调用接口:选择HTTPS。 host:设置为8443。 部署类型:选择在线部署。 图13 设置模型参数 填写apis定义,单击“保存”生效。apis定义中指定输入为文件,具体内容参见下面代码样例。
面。 图1所示图标,为JupyterLab的Git插件。 图1 Git插件 克隆GitHub的开源代码仓库 GitHub开源仓库地址:https://github.com/jupyterlab/extension-examplesitHub,单击,输入仓库地址,单击确定后即开始克
"source": "https://test-obs.obs.{ma_endpoint}.com:443/classify/input/cat-dog/36502.jpg......", "preview": "https://test-obs.obs
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
gpg && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | sed 's#deb https://#deb [signed-by=
ModelArts在线服务的API接口组成规则是什么? 模型部署成在线服务后,用户可以获取API接口用于访问推理。 API接口组成规则如下: https://域名/版本/infer/服务ID 示例如下: https://6ac81cdfac4f4a30be95xxxbb682.apig.xxx.xxx.com/v1/
确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTPS协议访问。ModelArts提供了SDK用于调用在线服务API,SDK调用方式请参见《SDK参考》>“场景1:部署在线服务Predictor的推理预测”。
三方开源源码 git clone https://gitee.com/ascend/MindSpeed.git git clone https://github.com/huggingface/transformers.git git clone https://github.com/NVIDIA/Megatron-LM
集群视图 https://cnnorth4-modelarts-sdk.obs.cn-north-4.myhuaweicloud.com/metrics/grafana/dashboards/ModelArts-Cluster-View.json 节点视图 https://cnnorth4-modelarts-sdk
s:\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r\n - https://mirrors
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听的容器端口,端口和协议可根据镜像实
python3 python3-pip && \ pip3 install --trusted-host https://repo.huaweicloud.comxxx -i https://repo.huaweicloud.comxxx/repository/pypi/simple
run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听的容器端口,使用的协议和端口号请根
2k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tatsu-lab/alpaca/resolve/main/data/train-
载后的文件如图2所示,代码所在路径为“./models/official/cv/resnet/”。 # 下载代码 git clone https://gitee.com/mindspore/models.git -b v1.5.0 图2 下载后的模型包文件 下载花卉识别数据集。
VS Code一键连接Notebook 视频介绍 前提条件 已经创建Notebook实例 ,实例已经开启SSH连接,实例状态为运行中。 请参考创建Notebook实例。 实例的密钥文件已经下载至本地的如下目录或其子目录中: Windows:C:\Users\{{user}} Mac/Linux: