检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情 父主题: 评估视频类数据集
"role": "system", "content": "请用幼儿园老师的口吻回答问题,注意语气温和亲切,通过提问、引导、赞美等方式,激发学生的思维和想象力。" }, { "role": "user",
数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情 父主题: 评估文本类数据集
数据评估 > 评估任务”。 单击操作列“报告”可以查看详细的质量评估报告。 图2 查看数据集评估报告 在“查看评估报告”页面,可以查看评估概览、通过率、评估类别分布等信息。 如果数据集未完成全部评估,可以单击右上角“继续评估”,评估剩余的数据。 图3 查看评估报告详情 父主题: 评估图片类数据集
导出盘古大模型至其他局点 导出盘古大模型至其他局点前,请确保当前空间为该用户所创建的空间。 模型训练发布完成后,可以通过导出模型功能将本局点训练的模型导出,导出后的模型可以通过导入盘古大模型至其他局点,导入至其他局点进行使用。 以从环境A迁移模型到环境B为例: 登录环境B的ModelArts
下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“全部审核”:审核员在审核一部分数据后,发现标注质量均很高,则可以一键提交剩余待审核数据,默认审核通过,即可完成审核任务。 图4 设置标注人员、标注信息示例 在“标注管理”页面,单
拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代
力开发成本、提升交付效率和查询性能,同时赋能精细化运营。 选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于人工泛化的真实业务场景数据。 来源三:基于简单
自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习
若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 大模型微调训练类问题
帮助用户高效地规划和分配任务,使团队协作更加高效。 此外,平台配备了完善的角色权限体系,覆盖超级管理员、管理员、模型开发工程师等多种角色。通过灵活的权限设置,每位用户能够在其对应的权限范围内安全高效地操作平台功能,从而最大程度保障数据的安全性与工作效率。 父主题: 创建并管理盘古工作空间
或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”
Non-Authoritative Information 非授权信息,请求成功。 204 No Content 请求完全成功,同时HTTP响应不包含响应体。 在响应OPTIONS方法的HTTP请求时返回此状态码。 205 Reset Content 重置内容,服务器处理成功。 206
示一个特征,并且必须包含预测目标列,预测目标列要求为连续型数据。 目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命名的方式指定数据是训练数据集、验证数据集还是测试数据集。训练数据名称需包含train字眼,如train01.csv;验证数据名称需包含e
下两种方式: 选择“可部分审核”:审核人员确认部分数据达到标注要求后,可以一键通过所有的标注。 选择“全部审核”:审核员在审核一部分数据后,发现标注质量均很高,则可以一键提交剩余待审核数据,默认审核通过,即可完成审核任务。 图4 设置标注人员、标注信息示例 在“标注管理”页面,单
型的收敛。 为了解决这个问题,可以在训练的初始阶段使用较小的学习率,然后逐渐增加学习率,直到达到预设的最大学习率。这个过程就叫做热身比例。通过使用热身比例,可以避免模型在初始阶段更新过快,从而有助于模型更好地收敛。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大
ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)是一个重要的统计指标,用于衡量预报系统的质量。它通过计算预报值与观测值之间的相关性来评估预报的准确性。ACC的计算涉及到预报值、观测值和气候平均值的差异,其值范围从-1到+1,值越接近+1表
的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 调用API获取项目ID 项目ID还可通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET https://{Endpoint}/v3/projects”,其
可选择预置加工算子,请参见文本类加工算子能力清单。 在左侧“添加算子”模块勾选所需算子。 在右侧“加工步骤编排”页面配置各算子的参数,可通过右侧按钮,拖拽算子的上下顺序来调整算子在加工任务流中的执行顺序。 算子编排过程中,可以单击右上角“保存为新模板”将当前算子编排流程保存为模
默认格式和盘古格式。尤其对于文本类和图片类数据集,平台支持将其转换为专门用于训练盘古大模型的盘古格式,为后续模型训练提供高效的数据支持。 通过整合上述功能,数据工程模块不仅帮助用户高效构建高质量的训练数据集,还推动了模型的精确训练与持续优化,提升了AI应用开发的效率和成果的可靠性。