检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
核数据。 如果需要将该审核任务移交给其他人员,可以单击“移交”,并设置移交人员以及移交数量,单击“确定”。 进入审核页面后,可通过单击“通过”或“不通过”逐一对数据进行审核,直至所有数据审核完成。 审核过程中可开启“标注前后对比”功能,查看当前数据标注前后的内容。 在完成数据标注审核后,需在“数据标注
评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测) 指标说明
在“数据配比”页面,支持两种配比方式,“按数据集”和“按标签”。 按数据集:可以设置不同数据集的配比数量,单击“确定”。 按标签:该场景适用于通过数据打标类清洗算子进行加工的文本类数据集,具体标签名称与标签值可在完成清洗文本类数据集操作后,进入数据集详情页面获取。 填写示例如图1所示。
计,旨在为开发者提供简单、高效的大模型开发和部署方式。平台配备数据工程、模型开发、应用开发三大工具链,帮助开发者充分利用盘古大模型的功能。通过该平台,企业可根据需求选择合适的盘古NLP大模型、CV大模型、预测大模型、科学计算大模型、专业大模型等服务,便捷地构建自己的模型和应用。
言模型交互、对接,以及理解大语言模型能力方面都起着重要作用。用户可以通过提示词工程来提高大语言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数
如何让大模型按指定风格或格式回复 如何分析大模型输出错误回答的根因 为什么其他大模型适用的提示词在盘古大模型上效果不佳 如何判断任务场景应通过调整提示词还是场景微调解决
核数据。 如果需要将该审核任务移交给其他人员,可以单击“移交”,并设置移交人员以及移交数量,单击“确定”。 进入审核页面后,可通过单击“通过”或“不通过”逐一对数据进行审核,直至所有数据审核完成。 审核过程中可开启“标注前后对比”功能,查看当前数据标注前后的内容。 在完成数据标注审核后,需在“数据标注
母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。 图片去重 通过把图片结构化处理后,过滤重复的图片/图文对数据。
builder 填写后可通过大模型进行优化,单击“智能优化”,在 “Prompt优化”窗口中单击“确定”。 图3 Prompt优化示例 步骤3:添加插件 应用支持添加插件技能,可添加“预置插件”和“个人插件”。添加插件可以为应用配备更多技能,建议插件数量不超过5个。 如果需要添加
示例如图2,您可以依据模板进行填写。 图2 配置Prompt 填写后可通过大模型进行优化,单击“智能优化”,在 “Prompt优化”窗口中单击“确定”。 步骤3:添加预置插件 应用支持添加插件技能,可添加“预置插件”和“个人插件”。添加插件可以为应用配备更多技能,建议插件数量不超过5个。 本节示例将指导您添加名为
"role": "system", "content": "请用幼儿园老师的口吻回答问题,注意语气温和亲切,通过提问、引导、赞美等方式,激发学生的思维和想象力。" }, { "role": "user",
查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。 父主题: 批量评估提示词效果
态将显示为“已创建”。 单击操作列的“评估”,进入评估页面。 在评估页面,可参考评估项对当前数据的问题进行标注,且满足则单击“通过”,不满足则单击“不通过”。 全部数据评估完成后,在“人工评估”页面可查看评估进展为“100%”。 单击操作列“报告”,可查看数据集质量评估报告。 父主题:
优化Prompt设计:从prompt设计维度来看,可以通过以下方式进行优化: 清晰的输入指令: 在翻译场景中,明确的输入指令将提升工作流的运行效果。例如:prompt可以设计为:请将以下中文句子翻译成英文:“我喜欢吃苹果”。通过这种明确的指令,更容易生成准确的翻译结果。 运用提示词
拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代
not contain:不包含 比较对象、值:条件表达式右边部分,支持“引用”和“输入”两种类型。 引用:支持用户选择工作流中已包含的前置节点输出变量值。 输入:支持用户自定义取值。 添加条件:单击“添加条件”,在当前分支添加多个条件表达式,多个条件表达式之间通过“且”或“或”来连接。
力开发成本、提升交付效率和查询性能,同时赋能精细化运营。 选择基模型/基础功能模型 盘古-NLP-N2-基础功能模型 准备训练数据 本场景不涉及自监督训练,无需准备自监督数据。 微调数据来源: 来源一:真实业务场景数据。 来源二:基于人工泛化的真实业务场景数据。 来源三:基于简单
态将显示为“已创建”。 单击操作列的“评估”,进入评估页面。 在评估页面,可参考评估项对当前数据的问题进行标注,且满足则单击“通过”,不满足则单击“不通过”。 如图2,对于文本类数据集而言,可选中问题内容后,右键标记数据问题。 图2 标记数据集问题 全部数据评估完成后,在“人工评估”页面可查看评估进展为“100%”。
态将显示为“已创建”。 单击操作列的“评估”,进入评估页面。 在评估页面,可参考评估项对当前数据的问题进行标注,且满足则单击“通过”,不满足则单击“不通过”。 全部数据评估完成后,在“人工评估”页面可查看评估进展为“100%”。 单击操作列“报告”,可查看数据集质量评估报告。 父主题:
若目标任务本身需要生成的长度已经超过模型上限,建议您替换可支持更长长度的模型。 数据质量:请检查训练数据中是否存在包含异常截断的数据,可以通过规则进行清洗。 父主题: 大模型微调训练类问题