检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。
调用说明 盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
数据集的整体质量。 数据发布:平台提供了数据评估、数据配比、数据流通的发布操作,旨在通过数据质量评估与合理的比例组合,确保数据满足大模型训练的多样性、平衡性和代表性需求,并促进数据的高效流通与应用。 数据评估:数据评估通过对数据集进行系统的质量检查,依据评估标准评估数据的多个维度,旨在发现潜在问题并加以解决。
比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。
创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number is 0”报错 日志提示“root: XXX valid number is 0”,表示训练集/验证集的有效样本量为0,例如:
在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练CV大模型
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练NLP大模型
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练预测大模型
生成的内容结尾必须要引导观众购买; 6.生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样;
插件URL 插件服务的请求URL地址。 URL协议只支持HTTP和HTTPS。 系统会校验URL地址是否为标准的URL格式。 URL对应的IP默认不应为内网,否则会导致注册失败。仅在非商用环境部署时,才允许支持内网URL,且需要通过相关的服务的启动配置项关闭内网屏蔽。 请求方法 插件服务的请求方式,POST或GET。
功能总览 功能总览 全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据流通和管理等功能。
练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。
模型”页面,单击右上角的“导入模型”。 在“导入模型”页面,下载用户证书。 图1 下载用户证书 登录环境A的ModelArts Studio大模型开发平台,在“空间资产 > 模型 > 本空间”页面,单击支持导出的模型名称,右上角的“导出模型”。 在“导出模型”页面,选择需要导出的模型,应设置
业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 Agent应用实践 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您将全面理解如何调用和集成盘古大模型的各类接
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据加工 > 数据标注”,单击页面右上角“创建标注任务”。 在“创建标注任务”页面选择需要标注的文本类数据集,并选择标注项。 选择标注项时,不同类型的数据文件对应的标注项有所差异,可基于页面提示进行选择。
有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Prompt提示词工程和插件自定义等功能,帮助用户在无需编写代码的情况下,
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
选择标注项为“图片Caption”且开启AI预标注功能时,可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员需要对全部的数据进行人工标注后才可提交标注结果。 选择“可部分标注”:允许标注人员在确认AI预标注满足要求后,直接使用AI预标注功能完成数据集的标注并提交标注结果。 标注审核 是否审核 否,标注后不进行审核操作。