检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的请求URI。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页签,模型列表单击“调用路径”,获取该模型的请求URI。 图2 预置模型的调用路径
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。 获取已部署模型的调用路径。在“我的服务”页签,单击状态为“运行中”的模型名称,在“详情”页签,可获取模型调用路径,如图1。 图1 获取已部署模型的调用路径 获取预置服务的调用路
预置模型或训练后的模型部署成功后,可以使用API调用科学计算大模型。 获取调用路径 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。 获取已部署模型的调用路径。在“我的服务”页签
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
使用“能力调测”调用NLP大模型 能力调测功能支持用户调用预置或训练后的NLP大模型。使用该功能前,请完成模型的部署操作,步骤详见创建NLP大模型部署任务。 使用“能力调测”调用NLP大模型可实现文本对话能力,即在输入框中输入问题,模型将基于问题输出相应的回答,具体步骤如下: 登录ModelArts
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
登录管理控制台。 在页面右上角的用户名的下拉列表中选择“我的凭证”。 图1 我的凭证 在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳
点和“结束”节点,单击该节点进行配置。 在“参数配置”中,配置输入、输出参数。 在“模型配置”中,选择已经部署的NLP大模型并进行参数配置,在“提示词配置”中,配置提示词。 如果“模型配置 > 模型选择”中没有可供选择的NLP大模型,请完成模型部署操作,详见《用户指南》“开发盘古NLP大模型
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
能力。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 使用“能力调测”功能 调用API接口 “能力调测”功能支持用户直接调用已部署的预置服务,使用步骤如下: 登录ModelArts
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
创建NLP大模型部署任务 部署后的模型可用于后续调用操作。 创建NLP大模型部署任务 查看NLP大模型部署任务详情 查看部署任务的详情,包括部署的模型基本信息、任务日志等。 查看NLP大模型部署任务详情 管理NLP大模型部署任务 可对部署任务执行执行描述、删除等操作。 管理NLP大模型部署任务