检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及
5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。
5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。
6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。
6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。
5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大max-model-len长度,不代表最佳性能。
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及
ModelArts控制台为什么能看到创建失败被删除的专属资源池? 在控制台页面操作删除专属资源池后,后端服务需要进行资源实例释放。在资源实例释放过程中,用户依然可以查询到资源池。如果需要创建专属资源池,建议等待5min后再创建,且不要使用已创建过的专属资源池名称来命名新建的专属资源池。如果做UI自动化测试,建议用例用随机串替代。
至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr.cn-southwest-2
INFO: root: Predict valid number is 0. 原因分析 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据是不符合规格的(如目标检测算法要求标注为矩形框,但是提供数据标注为非矩形框)。 处理方法 请您检查数据是否已标注,或检查数据标注是否符合算法要求。
04场景,在进行nccl-tests时,总线带宽理论峰值可达90GB/s,但实际测试下来的结果只有35GB/s。 原因分析 “nv_peer_mem”是一个Linux内核模块,它允许支持P2P(Peer-to-Peer)的NVIDIA GPU直接进行内存访问(DMA)。这意味着数据可以直接在
线服务。 服务测试 服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习文本分类项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可添加文本进行测试。在“自动学习”
-1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。 temperature
至此,已将模型部署为在线服务。 服务测试 服务部署节点运行成功后,单击“实例详情”可跳转至对应的在线服务详情页面。单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习物体检测项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,“服务部署”
处于“等待中”的状态时调整优先级。如通过调整作业优先级可以减少作业的排队时长。 什么是训练作业优先级 在用户运行训练作业过程中,需要对训练作业做优先级划分。比如有一些任务是低优先级,可能是跑一些测试、也可能是跑一些简单的不重要的实验。在这类场景下,当有高优先级任务的时候,需要能比低优先级任务更快进入排队队列。
介绍如何进行训练,包括训练数据处理、超参配置、训练任务、性能查看。 查看训练结果 查看日志和性能 查看训练后的日志,训练的性能结果。 训练评测 训练性能测试 训练精度测试 使用ModelLink开发的测试工具benchmark, 开展训练、性能对比、下游任务评测、loss和下游任务对比。 父主题:
使用自己的业务镜像或昇腾AscendHub提供的镜像。如果镜像中预置的软件版本不是您期望的版本,可以自行安装替换。 开发形式推荐通过容器中暴露的SSH端口以远程开发的模式(VSCode SSH Remote、 Xshell)连接到容器中进行开发,可以在容器中挂载宿主机的个人存储目录,用于存放代码和数据。
语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换,输出与输入语音匹配的视频,俗称“对口型”。该技术的主要作用就是在将音频与图片、音频与视频进行合成时,口型能够自然。 Wav2Lip模型的输入为任意的一段视频和一段语音,输出为一段唇音同步的视频。 Wav2Lip的网络模型
推理服务性能评测 语言模型推理性能测试 多模态模型推理性能测试 获取模型推理的Profiling数据 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.5.901)
每个输出序列要生成的最大tokens数量。 top_k 否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。