检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是否有样例数据支撑我进一步了解RES? RES提供了可用来测试的全量数据,包括智能场景和自定义场景的样例测试。 智能场景的样例测试,可参见智能场景(猜你喜欢)。 自定义场景的样例测试,可参见自定义场景(热度推荐)。 父主题: 基础问题
规格确认无误后,单击“去支付”,然后在支付页面完成付款,付款成功后即完成套餐包的购买。 RES目前只支持华北-北京四区域。 计费时将优先使用套餐包的额度,超出额度部分将以当月累计使用量所在的阶梯价计费。套餐包的额度为购买日起一年内的可用资源数。套餐包的有效时长为一年。 已购买套餐包不支持退订,购买前请确认。 父主题:
批处理、近线流处理、在线实时处理的三种数据处理方式,提供完备的一站式推荐平台,可快速设置运营规则进行AB测试。 功能优势: 全开放推荐流程,用户根据业务自定义推荐流程。 特征工程,特征处理多样化,支持自定义特征散列等。 丰富的推荐策略,提供丰富的召回、过滤、排序算子。 运营助手,
户ID和推荐数量,根据您设置的召回策略等返回用户的预测结果。 图1 在线预测 获取预测接口 通过在线服务页面获取接口 登录RES管理控制台,在左侧菜单栏中选择“在线服务”,进入服务列表页面。 单击目标服务名称前方的查看预测接口,通过单击预测接口右侧的,复制接口地址,调用服务。 图2
特征向量之间使用神经网络核来计算相互关系时,该神经网络的结构。每一层的节点数取值范围为[1,100],深度不超过5层。默认40,5。 是否移除因子分解机 (is_drop_fm) 是 Boolean 是否移除模型架构中的因子分解机部分,值为True则蜕变为带有核函数的DNN。取值true/false,默认false。
预测功能测试推荐结果进一步调整作业参数,也可以通过预测接口来调用API,获取推荐结果。 如果近线数据源有更新,需要重新调度召回策略,才会有对应的推荐结果。 预测 登录RES管理控制台,在左侧菜单栏中选择“推荐业务>智能场景”,进入智能场景列表页面。 单击“已完成”状态的目标服务名
match_infos 进行召回匹配的参数配置,即搜索的匹配信息。 label:客体的属性名称(可为字符串或字符串数组类型)。 value:相应的属性值。 weight:该属性值的匹配权重,多个匹配条件做加权汇总后按分值从大到小给出候选集。 filter_info 搜索的过滤信息。 black_list:客体需要过滤的黑名单。
训练集和测试集的比例,默认0.7。 测试数据占比:生成的结果中,训练集占整个训练集和测试集的比例,默认0.3。 结果保存路径 单击选择所有输出数据在OBS的保存根路径,会在这个根路径下自动创建feature_map、features_info_online_use、fields_
配置过期时间实现新闻的过期下架 在新闻推荐等对物料的时效性要求较高的场景,可配置物料的过期时间expireTime,设置每一条新闻的有效期,使新闻在有效期内实现可推送,超过有效期,不会被推送。 表1 物品数据中expireTime字段描述 字段名 类型 描述 是否必选 expireTime
配置物品status状态,完成物品的上下架 在推荐系统中,有一种常见的场景,最终推荐列表是否展示无库存或者已下架商品。针对此场景,RES系统在物品表中提供status字段来实现物品的上下架。 参考准备离线数据源中的物品表字段介绍,status置为0,代表该物品可被推荐。statu
数据为前一段时间中的数据,测试数据为后一段时间的数据,取值TIME。 “个数比例”:个数比例是将全部数据按个数比例随机划分成训练集和测试集传入值。取值RAMDOM。 训练数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0.7。 测试数据占比 生成的结果中,训练集占整个训练集和测试集的比例,默认0
按需购买:这种购买方式比较灵活,可以即开即停。 预付套餐包:客户预先购买一定的资源使用量配额,在按需使用过程中,系统优先扣减配额,超出配额的使用量才需要额外根据按需费用付费。购买的预付套餐包为在有效期内单位规格的计算时长。例如,您购买了计算型CPU(1U4G)实例20000小时,指单位规格1CU运行2
单击选择特征工程排序样本预处理生成的训练数据所在的OBS路径。 即特征工程“排序样本预处理”结果保存路径下具体的训练文件路径。 测试数据的obs路径 单击选择特征工程排序样本预处理生成的测试数据所在的OBS路径。 即特征工程“排序样本预处理”结果保存路径下具体的测试文件路径。 特征值数量统计文件
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
向上前进步长的参数。默认0.001。 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0
推荐系统提供了查询作业详情API接口,可返回作业详情。返回体中的作业状态字段“jobs.job_status”表示了当前任务的状态。 重新执行作业的API用来将任务以相同的配置重新执行一次。 通过查询作业详情API和重新执行作业的API可完成对任务状态的监控,并且可以根据任务状态决定是否需要重新执行任务。
针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。
待提取用户特征 (user_features) 是 JSONArray 从全局特征文件提取输入的用户特征,对不同类型的特征进行相应的处理,处理后的数据用于排序模型训练。 特征必须来自用户属性配置表中定义的特征。 [{ "feature_name": "age", "feature_type":
FM算法参数请参见深度网络因子分解机。 核函数特征交互神经网络是深度网络因子分解机的改进版本,深度网络因子分解机通过向量点乘来计算特征之间的关系,而核函数特征交互神经网络使用不同的核(kernel)来对特征交互进行建模,以此来计算两个域中特征的相互关系,其中核的种类包括向量内积外
推荐系统提供了重新执行作业的API,用来将任务以相同的配置重新执行一次,实现对离线任务生成结果的更新。以固定的周期定时调用此API,可保持结果处于一个较新的状态,以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,通过拖拽的方式完成配置。具体操作步骤如下: