检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
完成图片标注后,可进行模型的训练。模型训练的目的是得到满足需求的图像分类模型。请参考前提条件确保已标注的图片符合要求,否则数据集校验将会不通过。 前提条件 请确保您的数据集中的已标注的图片不低于100张。 请确保您的数据集中至少存在2种以上的图片分类,且每种分类的图片不少于5张。 操作步骤
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.908版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提
S应用实践中心,为具体的应用场景提供一整套解决方案。 应用中心介绍 “MaaS应用实践中心”提供基于行业客户应用场景的AI解决方案。MaaS提供的模型服务和华为云各AI应用层构建工具之间相互连通,通过灵活的组合方案,来帮助客户快速解决模型落地应用时所面临的业务及技术挑战。 Maa
Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.910版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
进行版本化管理,并构建为可运行的模型。 部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业 将模型部署为一个Web Service,并且提供在线的测试UI与监控功能,部署成功的在线服务,将为用户提供一个可调用的API。 将模型部署为批量推理服务
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.911版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
FINETUNING_TYPE,表示微调的策略,可以选择的参数包括:{full, lora} 删除 RUN_TYPE 所以当前的组合情况为: 项目 full lora pt(预训练) √ √ sft(指令微调) √ √ 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号
Lite Cluster上的训练方案。训练框架使用的是ModelLink。 本方案目前仅适用于企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.909版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.5.901版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.907版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据 本教程使用到的训练数据集是Alpaca数据集。Alpaca是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型
完成音频标注后,可以进行模型的训练。模型训练的目的是得到满足需求的声音分类模型。由于用于训练的音频,至少有2种以上的分类,每种分类的音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运行总览页面,单击数据标注节点的“实例详情”进入数据标注页面,完成数据标注。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 system:系统提
Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.910版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据 本教程使用到的训练数据集是Alpaca数据集。Alpaca是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型