检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/ws/xxx-Ascend/llm_t
Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/work/model/Llama2-13B
Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/work/model/Llama2-13B
Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/work/model/Llama2-13B
Face 转 Megatron mg2hf:用于Megatron 转 Hugging Face TP 8 张量并行数,一般等于单机卡数 PP 1 流水线并行数,一般等于节点数量 ORIGINAL_HF_WEIGHT /home/ma-user/work/model/Llama2-13B
先切换至授权区域。 如表1所示,包括了ModelArts的所有系统策略权限。如果系统预置的ModelArts权限,不满足您的授权要求,可以创建自定义策略,可参考策略JSON格式字段介绍。 表1 ModelArts系统策略 策略名称 描述 类型 ModelArts FullAccess
会显示“+”,您可单击“+”即可添加子网(上限10个)。 如果需要使用打通VPC的方式实现专属资源池访问公网,由于要访问的公网地址不确定,一般是建议用户在VPC中创建SNAT。此场景下,在打通VPC后,专属资源池中作业访问公网地址,默认不能转发到用户VPC的SNAT,需要提交工单
Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 若您的原始表格中已包含表头,需要开启“导入是否包含表头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 若您的原始表格中没有表头,需要关闭“导入是否包含表头”开关,从OBS
ch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型过拟合,如果模型压根不存在过拟合而
单击“提交”,在“信息确认”页面,确认训练作业的参数信息,确认无误后单击“确定”。 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。 训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如下所示。 父主题:
/scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
/scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
sh ./scripts/llama2/0_pl_lora_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
<训练引擎名称_版本号>-[cpu | <cuda_版本号 | cann_版本号 >]-<py_版本号>-<操作系统名称_版本号>-< x86_64 | aarch64> 表4 训练作业支持的AI引擎 工作环境 系统架构 系统版本 AI引擎与版本 支持的cuda或Ascend版本 TensorFlow x86_64
在Linux上安装配置Grafana 适用场景 本章节适用于在Linux操作系统的PC中安装配置Grafana。 前提条件 一台可访问外网的Ubuntu服务器。如果没有请具备以下条件: 准备一台ECS服务器(建议规格选8U或者以上,镜像选择Ubuntu,建议选择22.04版本,本
统一镜像Runtime的命名规范:<AI引擎名字及版本> - <硬件及版本:cpu或cuda或cann> - <python版本> - <操作系统版本> - <CPU架构> 当前支持自定义模型启动命令,预置AI引擎都有默认的启动命令,如非必要无需改动 表1 支持的常用引擎及其Runtime以及默认启动命令
sh ./scripts/llama2/0_pl_sft_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
sh ./scripts/llama2/0_pl_sft_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
sh ./scripts/llama2/0_pl_lora_13b.sh 创建训练作业时,可开启自动重启功能。当环境问题导致训练作业异常时,系统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断
某类任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。