检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用 6.0~10.8TB ,以存储更多模型文件。 图2 SFS类型和容量选择 创建ECS服务器 弹性云服务器(Elastic Cloud Server,ECS)是由CPU、
按需计费 包年/包月 创建桶不收取费用,按实际使用的存储容量和时长收费 计费示例 示例:存储费用 假设用户于2023年4月1日10:00将创建模型需用到的模型包文件上传至OBS桶中。按照存储费用结算,那么创建的费用计算如下: 存储费用:创建模型的模型包文件通过对象存储服务(OB
其中,文件系统类型推荐选用500MB/s/TiB或1000MB/s/TiB,应用于AI大模型场景中。存储容量推荐使用 6.0~10.8TB ,以存储更多模型文件。 图2 SFS类型和容量选择 创建ECS服务器 弹性云服务器(Elastic Cloud Server,ECS)是由CPU、
实例时,会使用计算资源和存储资源,会产生计算资源和存储资源的累计值计费。具体内容如表1所示。 Notebook实例停止运行时,EVS还会持续计费,需及时删除才能停止EVS计费。 计算资源费用: 如果运行Notebook实例时,使用专属资源池进行模型训练和推理,计算资源不计费。 如
目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个API在整网计算中和标杆场景下的差异,对于无明确精度差异来源情况或者对模型了解不多的情形下都推荐使用预检工具,检查第一个步骤或Loss明显出现问
规格有不同的容量。 k8s磁盘的驱逐策略是90%,所以可以正常使用的磁盘大小应该是“cache目录容量 x 0.9”。 裸机的本地磁盘为物理磁盘,无法扩容,如果存储的数据量大,建议使用SFS存放数据,SFS支持扩容。 GPU规格的资源 表1 GPU cache目录容量 GPU规格
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 PD分离部署场景下,大模型推
资源购买 购买弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和时长收费。您也可以购买包年包月套餐,提前规划资源的使用额度和时长。在欠费时,您需要及时(15天之内)续费以避免您的文件系统资源被清空。SFS购买指导请参考如何购买弹性文件服务?。 购买容器镜像服务SWR
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
吞吐量(tokens/s/p):可通过修改重要参数表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
吞吐量(tokens/s/p):可通过表1表格中output_dir参数值路径下的trainer_log.jsonl计算性能。取中间过程多steps平均值吞吐计算公式为: delta_tokens = end_total_tokens-start_ total_tokens delta_time
rank模块,html中会基于表格展示每张卡不同step的计算耗时、通信耗时和空闲耗时。基于该表格,通常关注计算耗时(compute)和空闲耗时(free)这两列,可以初步分析当前瓶颈点是计算还是任务下发,以及是否存在计算快慢卡和下发快慢卡。如下图所示,可以看到8号卡的计算耗时明显大于其他卡,因此8号卡的
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
专属资源池:专属资源池提供独享的计算资源,不与其他用户共享,资源更可控。使用ModelArts Standard开发平台的训练作业、部署模型以及开发环境时,可以使用Standard专属资源池的计算资源。使用前,您需要先购买创建一个专属资源池。 公共资源池:公共资源池提供公共的大规模计算集群,根据用户作业参数分配使用,资源按作业隔离。
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
在Workflow中使用大数据能力(DLI/MRS) 功能介绍 该节点通过调用MRS服务,提供大数据集群计算能力。主要用于数据批量处理、模型训练等场景。 应用场景 需要使用MRS Spark组件进行大量数据的计算时,可以根据已有数据使用该节点进行训练计算。 使用案例 在华为云MRS服务下查看自己账号下可用的MRS集群,
Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。 分离部署场景下,全量推理和增
类型的资源,ModelArts会挂载硬盘至“/cache”目录,用户可以使用此目录来储存临时文件。 当前开发环境的Cache盘使用时,没有容量告警,在使用时很容易超过限制,并直接重启Notebook实例。重启后多种配置重置,会导致用户数据丢弃,环境丢失,造成很不好的使用体验。因此