检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pCode认证并进行在线预测。 前提条件 提前部署在线服务,具体操作可以参考案例:使用ModelArts Standard一键完成商超商品识别模型部署。 操作步骤 在ModelArts控制台页面菜单栏中,单击“模型部署 > 在线服务”,进入在线服务页面。 单击“授权管理”后,单击创建应用即可创建App应用。
如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建AI模型,详细介绍请参见使用ModelArts Standard自动学习实现垃圾分类。
type=host_endpoints 方式一:图形界面的软件获取服务的IP和端口号 图6 接口返回示例 方式二:Python语言获取IP和端口号 Python代码如下,下述代码中以下参数需要手动修改: project_id:用户项目ID,获取方法请参见获取项目ID和名称。 s
人工标注 对于不同类型的数据,用户可以选择不同的标注类型。当前ModelArts支持如下类型的标注作业: 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
ocr | ├── model 必选: 固定子目录名称,用于放置模型相关文件 | │ ├── <<自定义python包>> 可选:用户自有的Python包,在模型推理代码中可以直接引用 | │ ├── saved_model.pb 必选: protocol buffer格式文件,包含该模型的图描述
0-de803ac9 INFO:root:Using OBS-Python-SDK-3.1.2 INFO:root:Using MoXing-v1.13.0-de803ac9 INFO:root:Using OBS-Python-SDK-3.1.2 原因分析 Pytorch通过spaw
type=host_endpoints 方式一:图形界面的软件获取服务的IP和端口号 图6 接口返回示例 方式二:Python语言获取IP和端口号 Python代码如下,下述代码中以下参数需要手动修改: project_id:用户项目ID,获取方法请参见获取项目ID和名称。 s
'multipart'"报错: 截图如下: 解决措施:可更新python-multipart为0.0.12版本,具体步骤如下: 启动训练任务前更新python-multipart版本: pip install python-multipart==0.0.12 父主题: 主流开源大模
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
报错Server Connection Error截图 图2 选不到Kernel 原因分析 用户误操作引起的。 解决方案 打开Terminal窗口,执行以下命令启动kernelgateway服务。 API_TYPE=kernel_gateway.jupyter_websocket L
化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。 声音分类:对环境中不同声音进行分类识别。 文本分类:识别一段文本的类别。 发布区域:华北-北京一、华北-北京四、
pth。 # /home/ma-user/anaconda3指用户的python环境 find /home/ma-user/anaconda3 -name modelarts.pth 执行如下命令删除用户使用的python环境中的modelarts.pth文件。 # /xxx/modelarts
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
中上传到OBS,再从OBS下载到本地,具体操作如下: 打开Python运行环境。 以下图为例,在Launcher页面的Notebook区域,单击“python-3.7.10”。请您以实际环境为准。 图2 打开Python运行环境 使用MoXing将目标文件从Notebook上传到OBS中。
${ANACONDA_DIR}/envs/${ENV_NAME}/bin/python to the actual python CMD="${ANACONDA_DIR}/envs/${ENV_NAME}/bin/python -m torch.distributed.launch \
可选值有以下两种。 “asc”为递增排序。 “desc”为递减排序,默认为“desc”。 search_content 否 String 指定要查询的文字信息,例如参数名称。默认为空。 响应消息 响应参数如表3所示。 表3 响应参数 参数 参数类型 说明 is_success Boolean
修改镜像中相关文件权限,使得 ma-user, uid = 1000 用户可读写。 RUN chown -R ma-user:100 {Python软件包路径} # 设置容器镜像预置环境变量。 # 请务必设置 PYTHONUNBUFFERED=1, 以免日志丢失。 ENV PYTHONUNBUFFERED=1
da,cudnn等,满足AI开发常用需求。 预置Conda环境:每个预置镜像都会创建一个相对应的Conda环境和一个基础Conda环境python(不包含任何AI引擎),如预置MindSpore所对应的Conda环境如下。 用户可以根据是否使用AI引擎Mindspore参与功能调试,选择不同的Conda环境。
/home/ma-user/modelarts/user-job-dir/run_train.sh python /home/ma-user/modelarts/user-job-dir/code/train.py {python_file_parameter} #训练自定义镜像-预置命令场景 父主题: