检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
mmon-vocab8404-pytorch/example/asr_example.wav的识别结果如下: 图2 测试音频识别结果 步骤九:在Aishell1测试集上测试 python infer.py --model_path 模型文件所在的绝对路径 --input_file
04-x86_64(推荐) python2.7、python3.6、python3.7的运行环境搭载的PyTorch版本为1.0。 python2.7、python3.6、python3.7、pytorch1.4-python3.7、pytorch1.5-python3.7,表示该模型可同时在CPU或GPU运行。
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
单击本地IDE右下角interpreter,选择Notebook的python解释器。 图9 选择Python解释器 像本地运行代码一样,直接单击运行按钮运行代码即可,此时虽然是在本地IDE点的运行按钮,实际上运行的是云端Notebook里的代码,日志可以回显在本地的日志窗口。 图10 查看运行日志 也可以单击本地IDE右上角的Run/Debug
Step3:安装ma-cli 在本地环境cmd中执行命令python --version,确认环境已经安装完成Python。(Python版本需大于3.7.x且小于3.10.x版本,推荐使用3.7.x版本) C:\Users\xxx>python --version Python *.*.* 执行命令pip
4 LTS cuda:10.2.89 cudnn:7.6.5.32 Python解释器路径及版本:/home/ma-user/anaconda3/envs/PyTorch-1.8/bin/python, python 3.7.10 三方包安装路径:/home/ma-user/ana
Notebook:选择运行Notebook的一个内核,例如TensorFlow、python Console:可调出终端进行命令控制 Other:可编辑其他文件 在JupyterLab中新建Terminal 在Terminal中可以执行Python命令,操作终端,如下步骤详细介绍了如何打开JupyterLab的Terminal。
the installed python version of this base image is python3.8, you should create a soft link from '/home/ma-user/anaconda/lib/python3.8/site-pac
/home/ma-user/miniconda3/bin/activate MindSpore-python3.7-aarch64 #输入python并回车,进入python环境 python 然后参考文件传输进行OBS传输操作。 下载Notebook中的文件至本地 在Noteboo
LTS cuda:10.1.243 cudnn:7.6.5.32 Python解释器路径及版本:/home/ma-user/anaconda3/envs/TensorFlow-2.1/bin/python, python 3.7.10 三方包安装路径:/home/ma-user/an
"output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name
"output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name
"output": "CCC" } 格式,则需要执行convert_to_sharegpt.py 文件将数据集转换为share gpt格式。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name
DEFAULT_CONDA_ENV_NAME=python-3.7.10 您可以使用Python命令启动训练脚本。启动命令示例如下: python /home/ma-user/modelarts/user-job-dir/code/train.py 方式二:使用“conda env python”的绝对路径。
Gallery的订阅算法实现花卉识别 示例:从 0 到 1 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 使用ModelArts Standard一键完成商超商品识别模型部署 专属资源池训练
方法二:单击上侧菜单栏中的Run > Open configurations按钮 步骤二:选择语言 如果需要对Python语言进行设置,在弹出的Select a debug configuration中选择Python File,其他语言操作类似。如下图所示: 步骤三:编辑launch.json,增加justMyCode":
"AAA" "input": "BBB", "output": "CCC" } 执行convert_to_sharegpt.py 文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name
"AAA" "input": "BBB", "output": "CCC" } 执行convert_to_sharegpt.py 文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name
"AAA" "input": "BBB", "output": "CCC" } 执行convert_to_sharegpt.py 文件。 python convert_to_sharegpt.py \ --input_file_path data_test.json \ --out_file_name
NGPUS_PER_NODE="$MA_NUM_GPUS" # 自定义环境变量,指定python脚本和参数 PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py PYTHON_ARGS="" CMD="python -m torch.distributed.launch