检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾过期药物等。人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾
余垃圾蛋壳、厨余垃圾水果果皮、可回收物塑料玩具、可回收物纸板箱、其他垃圾烟蒂、其他垃圾一次性餐盒、有害垃圾干电池、有害垃圾过期药物等。人工识别效率低下、费时费力,AI技术显然可以为此贡献一份力量。 该案例介绍了华为云一站式开发平台ModelArts的自动学习功能实现的常见生活垃圾
bandwidth contention 通信维度,识别计算和通信相互掩盖,可能会抢占通信带宽。 communication - retransmission 通信维度,识别通信重传问题,单次重传耗时4秒以上。 memory 内存维度,识别异常内存算子。 dataloader 数据加载
在ModelArts控制台界面上单击VS Code接入并在新界面单击打开,未弹出VS Code窗口 原因分析 未安装VS Code或者安装版本过低。 解决方法 下载并安装VS Code(Windows用户请单击“Win”,其他用户请单击“其他”下载),安装完成后单击“刷新”完成连接。
Printf("%+v\n", response) } else { fmt.Println(err) } } Python封装API方式切换操作系统 以下为BMS使用Python语言通过API方式切换操作系统的示例代码。 # -*- coding: UTF-8 -*- import
NodeCondtition中。同时,节点故障指标默认会上报到AOM,您可在AOM配置告警通知。 当发生节点异常时,在故障初步分析阶段,您可先按表1识别是否为亚健康并自助进行处理,若不是,则为故障,请联系客户经理发起维修流程(若无客户经理可提交工单)。 表1 节点故障类型定义 NodeCondition
odelArts会自动识别导致作业失败的原因,在训练日志界面上给出提示。提示包括三部分:失败的可能原因、推荐的解决方案以及对应的日志(底色标红部分)。 图1 训练故障识别 ModelArts Standard会对部分常见训练错误给出分析建议,目前还不能识别所有错误,提供的失败可能
Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu + 华为自研Ascend Snt9B硬件,完成Qwen-VL推理。 资源规格要求
Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1
下,采集一定时间段内的GPU利用率或NPU利用率,并根据这段时间内的GPU利用率或NPU利用率的方差和中位数来判断资源使用率是否有变化。如果没有变化,则判定作业卡死。 系统预置了卡死检测的环境变量“MA_HANG_DETECT_TIME=30”,表示30分钟内进程IO无变化则判定
已购买资源包,但使用量超出资源包额度或资源包属性与桶属性不匹配,进而产生按需费用,同时账户中的余额不足以抵扣产生的按需费用。请参考如何查看ModelArts中正在收费的作业?识别产生按需计费的原因,并重新选择正确的资源包或保证账户中的余额充足。 未购买资源包,在按需计费模式下账户的余额不足。 欠费影响 包年/包月
断工具,支持对推理、训练等多种场景进行自动诊断。自动诊断工具可以有效减少人工分析profiling的耗时,降低性能调优的门槛,帮助客户快速识别性能瓶颈点并完成性能优化。推荐用户在采集profiling分析后使用自动诊断工具进行初步性能调优。更进一步的性能调优再使用Ascend-I
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
Configuration”对话框。在对话框中单击“+”,选择“Python”。 图6 前往PyCharm解释器 “Script path”选择train.py文件,“Parameters”命令如下所示,并选择Python解释器,然后单击“OK”: --net_name=resnet50
自定义镜像训练作业的自定义镜像的容器的启动命令。形式为:“bash /home/work/run_train.sh python /home/work/user-job-dir/app/train.py {python_file_parameter}”。 请求示例 GET https://endpoi
训练作业日志中提示“No module named .*” 用户请按照以下思路进行逐步排查: 检查依赖包是否存在 检查依赖包路径是否能被识别 检查训练作业使用的资源规格是否正确 建议与总结 检查依赖包是否存在 如果依赖包不存在,您可以使用以下两种方式完成依赖包的安装。 方式一(推
步骤2:安装Python插件以及配置入参 打开VS Code工具,单击“Extensions”,搜索python,然后单击“Install”。 图3 安装Python 输入Ctrl+Shirt+P,搜索“python:select interpreter”,选择Python解释器。 图4
应的文件夹内即完成本地代码上传至云端。 在VS Code中打开要执行的代码文件,在执行代码之前需要选择合适的Python版本路径,单击下方默认的Python版本路径,此时在上方会出现该远程环境上所有的python版本,选择自己需要的版本即可。 图14 选择Python版本 对于打
会上传失败。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload Files按钮,打开文件上传窗口,选择左侧的进入OBS文件上传界面。 图1 上传文件图标 图2 OBS文件上传界面 需要提供OBS文件路径,可以通过以下两种方式提供:
one文件。 通过JupyterLab打开一个运行中的Notebook。 单击JupyterLab窗口上方导航栏的ModelArts Upload Files按钮,打开文件上传窗口,选择左侧的进入GitHub开源仓库Clone界面。 图1 上传文件图标 图2 进入GitHub开源仓库Clone界面