检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Server。 镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
Server。 镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。
Train_command_path 必填,训练启动脚本,输入启动脚本地址,例如“/xxx/xxx/main.py”。仅支持shell脚本和python脚本。脚本示例可以参考train.py示例。如果是SWR容器内的地址,则填写绝对路径;如果是AI Gallery仓库内的地址,则填写相对路径。
Cluster CCE 集群平台 # 获取 RANK_TABLE_FILE 的信息 RANKTABLE_RESULT=$(python $SHELL_FOLDER/../tools/get_ranktable.py) # 将脚本的返回值进行拆分,得到 节点总数量(NNODES)
Cluster CCE 集群平台 # 获取 RANK_TABLE_FILE 的信息 RANKTABLE_RESULT=$(python $SHELL_FOLDER/../tools/get_ranktable.py) # 将脚本的返回值进行拆分,得到 节点总数量(NNODES)
引擎规格的ID。如“caffe-1.0.0-python2.7”。 engine_name String 引擎规格的名称。如“Caffe”。 engine_version String 引擎规格的版本。对一个引擎名称,有多个版本的引擎,如使用python2.7的"Caffe-1.0.0-python2.7"等。
5、训练过程中报"ModuleNotFoundError: No module named 'multipart'"关键字异常,可更新python-multipart为0.0.12版本,具体请参考6-问题6:No module named 'multipart'"报错: 。 父主题:
Server。 镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。
ocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户在Notebook中直
"engine_name" : "PyTorch", "engine_version" : "PyTorch-1.3.0-python3.6" } } } 响应示例 状态码:201 ok { "metadata" : { "id" : "2e5
Server。 镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.3.1 Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址
Server。 镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。
若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。
ocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户在Notebook中直
ocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到 /home/ma-user/work/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户在Notebook中直
"engine_name" : "PyTorch", "engine_version" : "PyTorch-1.3.0-python3.6" } } } 响应示例 状态码:201 ok { "metadata" : { "id" : "2e5
torchvision获取数据集,因此示例代码中提供了三种训练数据加载方式。 cifar-10数据集下载链接,单击“CIFAR-10 python version”。 尝试基于torchvision获取cifar10数据集。 基于数据链接下载数据并解压,放置在指定目录下,训练集和
节点的功能。 污点:默认为空。支持给节点加污点来设置反亲和性,每个节点最多配置5条污点。 安装后执行脚本:请输入脚本命令,命令中不能包含中文字符,需传入Base64转码后的脚本,转码后的字符数不能超过2048。脚本将在Kubernetes软件安装后执行,不影响Kubernetes软件安装。