检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
seed_all函数可固定随机数的范围如下表所示。 API 固定随机数 os.environ['PYTHONHASHSEED'] = str(seed) 禁止Python中的hash随机化。 random.seed(seed) 设置random随机生成器的种子。 np.random.seed(seed)
引擎规格的ID。如“caffe-1.0.0-python2.7”。 engine_name String 引擎规格的名称。如“Caffe”。 engine_version String 引擎规格的版本。对一个引擎名称,有多个版本的引擎,如使用python2.7的"Caffe-1.0.0-python2.7"等。
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
可能原因是用户使用的启动脚本为旧版本的run_train.sh,脚本里面有某些环境变量在新版本下发的作业中并不存在这些环境变量导致。 可能原因是使用Python file接口并发读写同一文件。 处理方法 对挂载盘的数据加权限,可以改为与训练容器内相同的用户组(1000),假如/nas盘是挂载路径,执行如下代码。
当部署推理服务的“安全认证”选择了“AppCode认证”,则需要将复制的接口代码中headers中的X-Apig-AppCode的参数值修改为真实的AppCode值。 Python示例代码如下: import requests API_URL = "https://xxxxxxx/v1/gallery/65f38
引擎规格的ID。如“caffe-1.0.0-python2.7”。 engine_name String 引擎规格的名称。如“Caffe”。 engine_version String 引擎规格的版本。对一个引擎名称,有多个版本的引擎,如使用python2.7的"Caffe-1.0.0-python2.7"等。
transformers sentencepiece 步骤六:Hunyuan-DiT推理调用 执行推理脚本 cd ${container_work_dir} python hunyuan_dit_example.py 查看结果 父主题: 文生图模型训练推理
install -r requirements.txt 执行精度测试启动脚本eval_test.py,具体操作命令如下,可以根据参数说明修改参数。 python eval_test.py \ --max_workers=1 \ --service_name=llama2-13b-chat-test
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
载完成后,镜像的启动命令会被自动执行。启动命令的填写规范如下: 如果训练启动脚本用的是py文件,例如train.py,运行命令可以写为python ${MA_JOB_DIR}/demo-code/train.py。 如果训练启动脚本用的是sh文件,例如main.sh,运行命令可以写为bash
${container_name} bash 步骤八:进入容器执行数据集格式调整脚本 cd ${container_work_dir}/datasets/ python data.py 执行成功后,当前目录下会生成满足格式要求的数据集目录images_txt_datasets。 步骤九:进入容器运行Finetune训练
"engine_name": "TensorFlow", "engine_id": 1, "engine_version": "TF-1.4.0-python2.7", "status": 10, "app_url": "/usr/app/", "boot_file_url":
使用模型服务:在MaaS体验模型服务,测试推理结果。 结果分析:分析模型的调优结果和推理结果,对比新闻分类效果。 方案优势 高准确性:利用模型强大的语义理解能力,系统能够准确识别新闻内容的主题和关键词,实现高准确率的自动分类。 快速响应:系统能够实时处理新闻内容,快速完成分类,满足新闻时效性的要求。 可扩展性:随着
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
SSH:镜像支持本地IDE通过SSH协议远程连接Notebook。 id String 待创建Notebook实例的镜像,需要指定镜像ID,ID格式为通用唯一识别码(Universally Unique Identifier,简称UUID)。预置镜像的ID参考查询支持的镜像列表获取。 name String
Server。 镜像适配的Cann版本是cann_8.0.RC3。 Server驱动版本要求23.0.6 PyTorch版本:2.2.0 Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址
attention_processor.py /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/diffusers/models/attention_processor.py 构建自定义镜像sdxl-train:0
attention_processor.py /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site-packages/diffusers/models/attention_processor.py 把ascendcl