检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 exampl
物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 图片格式支持JPG、JPEG、PNG、BMP。 父主题: 准备数据
ModelArts SDK、OBS SDK和MoXing的区别? ModelArts SDK ModelArts服务提供的SDK,可调用ModelArts功能。您可以下载SDK至本地调用接口,也可以在ModelArts Notebook中直接调用。 ModelArts SDK提供
RuntimeError: maximum recursion depth exceeded in __instancecheck__ 原因分析 递归深度超过了Python默认的递归深度,导致训练失败。 处理方法 如果超过最大递归深度,建议您在启动文件中增大递归调用深度,具体操作如下: import sys
权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 exampl
权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 exampl
权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 exampl
权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 exampl
存为自定义镜像), 然后使用DataArts执行此脚本的任务时提示没有这个库。 原因分析 客户创建了多个虚拟环境,numba库安装在了python-3.7.10中,如图1所示。 图1 查询创建的虚拟环境 解决方案 在Terminal中执行conda deactivate命令退出当
org中的包,请在pypi.org中查看是否有对应版本的包并查看包安装限制。 下载的包与对应基础镜像架构不匹配,如arm系统下载了x86的包,python2版本的pip下载了python3的包。具体基础镜像运行环境请参见推理基础镜像列表。 安装pip包有先后依赖关系。 处理方法 到pypi.org上查询
1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展Flux模型的FLUX.1-dev和FLUX.1-schnell两个版本分别使用ComfyUI 0.2.2和Diffusers
看已完成标注的图片,或者通过右侧的“全部标签”列表,了解当前已完成的标签名称和标签数量。 同步或添加图片 在“数据标注”节点单击“实例详情”进入数据标注页面,数据标注的图片来源有两种,通过本地添加图片和同步OBS中的图片数据。 图3 添加本地图片 图4 同步OBS图片数据 添加数
etName/data-cat/cat.jpg”。 如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 图像分类数据集要求将标注对象和标注文件存储在同一目录,并且一一对应,例如标注对象文件名为“10.jpg”,那么标注文件的文件名应为“10.txt”。 数据文件存储示例:
预测”页签单击“上传”,选择本地图片进行测试。 单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如
multiprocessing启动方式有误。 处理方法 可以参考官方文档,如下: """run.py:""" #!/usr/bin/env python import os import torch import torch.distributed as dist import torch
区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0
界面。 在创建自动学习项目页面,参考表1填写相应参数。 表1 参数说明 参数 说明 “名称” 项目的名称。 名称只能包含数字、字母、下划线和中划线,长度不能超过64位且不能为空。 名称请以字母开头。 名称不允许重复。 “描述” 对项目的简要描述。 “数据集” 可在右侧下拉框选择已
Step2 安装依赖和软件包 Python版本要求3.10,如果不满足的话,建议更新容器的conda环境的Python版本。 # 输入如下命令,待conda界面准备完成后输入y,等待自动下载安装 conda create --name py310 python=3.10 参数说明:
<ref>击掌</ref><box>(536,509),(588,602)</box> image = tokenizer.draw_bbox_on_latest_picture(response, history) if image: image.save('1.jpg') else: print("no
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales