检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-3rdLLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,执行如下命令安装性能测试的关依赖。 pip install -r requirements
e_params文件里的参数配置项,支持修改自定义镜像的部署参数。 计算规格选择 - 按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径
表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可
全参微调:直接在模型上训练,影响模型全量参数的微调训练,效果较好,收敛速度较慢,训练时间较长。 LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特定领域的数
创建数据分发Sampler,使每个进程加载一个mini batch中不同部分的数据。 网络中相邻参数分桶,一般为神经网络模型中需要进行参数更新的每一层网络。 每个进程前向传播并各自计算梯度。 模型某一层的参数得到梯度后会马上进行通讯并进行梯度平均。 各GPU更新模型参数。 具体流程图如下: 图1 多机多卡数据并行训练
输出数据的目录结构如下所示。 output_path/ --Data/ ----class1/ # 如果输入数据有标注信息会一并输出,class1为标注类别 ------1.jpg ------2_checked.jpg
已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,切换一个conda环境。 cd benchmark_tools conda
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径
为8。 vi config.yaml 图3 修改卡数 重新创建pod。 kubectl apply -f config.yaml 进入容器并查看卡信息,{pod_name}替换为您的pod名字,{namespace}替换为您的命名空间(默认为default)。 kubectl exec
本文价格仅供参考,实际计算请以ModelArts价格详情中的价格为准。 变更配置后对计费的影响 如果您在购买按需计费资源池后变更了规格配置,会产生一个新订单并开始按新配置的价格计费,旧订单自动失效。 如果您在一个小时内变更了规格配置,将会产生多条计费信息。每条计费信息的开始时间和结束时间对应不同配置在该小时内的生效时间。
开关打开:表示启用自动停止功能,此时必须配置自动停止时间,支持设置为“1小时”、“2小时”、“4小时”、6小时或“自定义”。启用该参数并设置时间后,运行时长到期后将会自动终止任务,准备排队等状态不扣除运行时长。 参数配置完成后,单击“提交”,创建部署任务。 在“我的服务”列表
断点续训练建议和训练容错检查(即自动重启)功能同时使用。在创建训练作业页面,开启“自动重启”开关。训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。 PyTorch版reload ckpt PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model
时极大延长。 --accuracy 指定模型精度,只支持fp16和fp32。 string 否 fp16 - Python API 导入包并创建tailor对象。 from tailor.tailor import Tailor onnx_model_path = "./resnet50-v2-7
、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径
modelarts/workspace.id String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 os.modelarts/name String 用户指定的pool名称。 os.modelarts/resource
modelarts/workspace.id String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 os.modelarts/name String 用户指定的pool名称。 os.modelarts/resource
使用root用户以SSH的方式登录DevServer。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-*
ion上的资源和Ascend Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器
使用root用户以SSH的方式登录Server。 将AscendCloud代码包AscendCloud-xxx-xxx.zip上传到${workdir}目录下并解压缩,如:/home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-*