检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite DevServer运行的,需要购买并开通DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可
0/0路由作为默认路由,此时无需提交工单添加默认路由即可完成网络配置。 步骤二:配置SNAT 参考通过公网NAT网关的SNAT规则访问公网章节,配置并验证SNAT。 查看可用IP数量(可选) 登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”
AWQ-W4A16:AWQ是一种大模型低比特权重的训练后量化(PTQ)方法,W4A16可实现4-bit权重、16-bit激活(W4A16)量化,通过激活值来选择并放大显著权重,以提高推理效率。 压缩后模型名称 设置压缩后产生的新模型的名称。 支持1~64位,以中文、大小写字母开头,只包含中文、大小写字
010_x86_64.whl”更改为“faiss_gpu-1.5.3-cp36-cp36m-manylinux1_x86_64.whl”,并安装,执行命令如下: import moxing as mox import os mox.file.copy('obs://wolfro
p 5s后再进行下一个数据的解压。 如果训练作业的工作目录下有core文件生成,可以在启动脚本最前面加上如下代码,来关闭core文件产生。并推荐先在开发环境中进行代码调试。 import os os.system("ulimit -c 0") 建议与总结 在创建训练作业前,推荐您
ndCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize
下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate
自定义一个易于分辨的AI应用中文名称。 字符长度在1到30之间。 许可证 否 选择AI应用遵循的许可证。 计算规格选择 是 按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不可用的资源会置灰。右侧“配
问权限,可以重置用户密码、分配用户权限等。由于账号是付费主体,为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建IAM用户并使用他们进行日常管理工作。 IAM用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。 在我的凭证下,您可
化。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate
输入,用相同的输入分别在NPU(GPU)和CPU上执行算子,比较输出差异。预检最大的好处是,它能根据算子(API)的精度标准来比较输出结果并判定其是否有精度问题。预检工具使用包含以下三步:dump、run_ut以及api_precision_compare。基本步骤如下: 通过pip安装Msprobe工具。
磁盘规格 按照对应的存储使用情况选择存储大小。 SSH远程开发 如果需通过VS Code远程连接Notebook实例,可打开SSH远程开发,并选择自己的密钥对。 在Notebook列表,单击“操作”列的“打开”,打开Notebook实例。 ModelArts Lite DevServer
介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开
nk源码,并将以上源码打包至镜像环境中。 若用户希望修改源码,则需要使用新镜像创建容器,在容器内的/home/ma-user工作目录中访问并编辑以上源码文件。编辑完成后重新构建新镜像。 注意:训练作业的资源池以及ECS都需要联通外网,否则会安装和下载失败。 ECS获取和上传基础镜像
ion上的资源和Ascend Snt9B。 如果使用DevServer资源,请参考DevServer资源开通,购买DevServer资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器
bleach==1.4.3 click==6.6 依赖包为whl包时 如果训练后台不支持下载开源安装包或者使用用户编译的whl包时,由于系统无法自动下载并安装,因此需要在“代码目录”放置此whl包,同时创建一个命名为“pip-requirements.txt”的文件,并且在文件中指定此whl包的包名。依赖包必须为“
化。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate
下。 1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。 conda create --name awq --clone PyTorch-2.1.0 conda activate
Turbo的存储加速实践。 设置训练存储加速 当完成上传数据至OBS并预热到SFS Turbo中步骤后,在ModelArts Standard中创建训练作业时,设置训练“SFS Turbo”,在“文件系统”中选择SFS Turbo实例名称,并指定“存储位置”和“云上挂载路径”。系统会在训练作业启
-max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。 --max-model-len:推理时最大输入+最大输出tokens数量,输入超过该数量会直接返回。max-model-len的值必须小于config.json文件中的"seq_length"的值,否则推理预测会报错。不同模型推理支持的