检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
取训练作业日志的对应的obs路径。 调用查询训练作业指定任务的运行指标接口查看训练作业的运行指标详情。 当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项
法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调整模型的参数,使其能够更好地拟合特定任务的数据分布。 与从头开始训练模型相比,监督式微调能
otebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题: 主流开源大模
在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应用,部署并启动推理服务,在线预测在线服务。 父主题:
说明请参见创建模型。单击“立即创建”,完成新版本的创建操作。 删除版本 在“模型管理”页面,单击模型的“版本数量”,在展开的版本列表中,单击“操作”列的“删除”,即可删除对应的版本。 如果模型的版本已经部署服务,需先删除关联的服务后再执行删除操作。版本删除后不可恢复,请谨慎操作。
修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时存放
n量化和kvcache量化。 量化的一般步骤是:1、对浮点类型的权重镜像量化并保存量化完的权重;2、使用量化完的权重进行推理部署。 什么是W4A16量化 W4A16量化方案能显著降低模型显存以及需要部署的卡数(约75%)。大幅降低小batch下的增量推理时延。 约束限制 支持AWQ
开发环境细化权限说明 权限 对应API接口 授权项 依赖的授权项 IAM项目 企业项目 创建开发环境实例 POST /v1/{project_id}/notebooks modelarts:notebook:create ecs:serverKeypairs:create swr:
训练作业:用户在运行训练作业时,可以查看多个计算节点的CPU、GPU、NPU资源使用情况。具体请参见训练资源监控章节。 在线服务:用户将模型部署为在线服务后,可以通过监控功能查看CPU、内存、GPU等资源使用统计信息和模型调用次数统计,具体参见查看服务详情章节。 父主题: ModelArts
使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ
yaml。 配置用户名密码鉴权 以在虚拟机上使用ma-cli configure为例,介绍如何配置用户名密码进行鉴权。 以下样例中所有以${}装饰的字符串都代表一个变量,用户可以根据实际情况指定对应的值。 比如${your_password}表示输入用户自己的密码信息。 # 默认使用DE
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
求上传数据的参数名。 设置完成后,单击“立即创建”,等待模型状态变为“正常”。 单击新建的模型名称左侧的小三角形,展开模型的版本列表。在操作列单击“部署 > 在线服务”,跳转至在线服务的部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使用默认值。
修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时存放
修改yaml文件(demo.yaml)的参数如表1所示。 表1 修改重要参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-72B 必须修改。加载tokenizer与Hugging Face权重时存放
参数session即是1初始化的数据。返回的是一个字典,其中flavors值是一个列表,描述了训练服务支持的所有规格的信息。每个元素中flavor_id是可直接用于远程训练任务的计算规格,max_num是该规格的最大节点数。如果用户知道要使用的计算规格,可以略过这一步。 提交远程训练作业。
OBS的计费规则进行持续计费。 按需计费 包年/包月 创建桶不收取费用,按实际使用的存储容量和时长收费 弹性文件服务SFS Turbo 使用专属资源池进行训练时,支持挂载多个弹性文件服务SFS Turbo。用于存储模型训练的代码及输入输出数据。 具体费用可参见弹性文件服务价格详情。
费,各个服务开始计费的状态如下。 微调大师:“训练中” AI应用:“运行中” 在线推理服务:“运行中” 计费规则 资源整点扣费,按需计费。 计费的最小单位为秒,话单上报后的每一小时对用户账号进行一次扣费。如果使用过程中暂停、终止了消耗资源的AI Gallery工具链服务,即服务不
务。 部署为在线服务 部署为批量服务 访问服务 服务部署完成后,针对在线服务和边缘服务,您可以访问并使用服务,针对批量服务,您可以查看其预测结果。 访问在线服务 查看批量服务预测结果
Standard提供模型、服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不同规格、不同厂商的摄像机上,这是一项非常耗时、费力的巨大工程,